Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative search for world’s biggest physics laboratory

08.10.2008
Huge quantities of data from the particle accelerator experiment at the CERN Research Center converge in Karlsruhe. They are saved and processed in a worldwide networked grid computing centre. The Global Grid User Support at the Research Center in Karlsruhe relies on the ConWeaver search engine technology developed at the Fraunhofer IGD for project-related information management.

The Research Center in Karlsruhe is one of the biggest research institutions for natural and engineering scientists in Europe. Every day thousands of scientists all over the world access the data saved in the computing centre. Since the beginning of September 2008 there is even more data converging in Karlsruhe. Here is one of the main hubs through which the data for the large-scale experiment with the particle accelerator at the European Research Center (CERN) in Geneva passes.

The experiments of the Large Hadron Collider at CERN generate huge quantities of data. Experts estimate up to several gigabytes per second for individual experiments. In order to be able to analyze this effectively, scientists have built a worldwide grid infrastructure. This includes eleven Regional Operating Centers (ROCs) each with thousands of networked computers in locations including Germany, Taiwan and the USA. As one of the ROCs the Research Center in Karlsruhe provides computing and memory capacity and looks after the coordination of the worldwide grid user support.

The teams of the ROCs provide first-level support on a weekly rotation. They do not get to know the teams personally and the time differences of the different locations make their work more difficult. A helpdesk employee in Karlsruhe does not know about the queries that a colleague dealt with in Taipeh the week before.

The “Global Grid User Support” (GGUS) project tackles these problems and focuses on intelligent information-technological solutions. GGUS integrates a search engine that doesn’t only find best-practices and solutions to problems, but also suggests independent solutions and best practices for the given problem.

The search and suggestion function is based on the ConWeaver-technology of the Fraunhofer spin-off ConWeaver GmbH. It was especially adapted for the GGUS by the GGUS team together with ConWeaver employees from the Fraunhofer IGD. “Such innovative information technological solutions are a suitable tool for the large challenge faced by the helpdesk,” explains Rainer Kupsch, who at the time was Department Manager of the Research Center in Karlsruhe. “By improving the productivity of the support employees and the quality of the answers, the grid-relevant problems can be solved more quickly,” says Dr. Antoni, Group Manager at GGUS.

The ConWeaver team is presenting its technology at the 4th Semantics Day “User Workshop – Semantics Search with ConWeaver” on November 12, 2008 in Darmstadt. Further information can be obtained from: www.conweaver.de

Contact partner:
Dr. Thomas Kamps
Deputy Department Manager/Head of ConWeaver team
Fraunhofer Institute for Computer Graphics Research IGD
Managing Director of ConWeaver GmbH
Fraunhoferstrasse 5
64283 Darmstadt
Tel +49 6151 155-651
Fax +49 6151 155-139
E-mail: thomas.kamps@conweaver.de

Detlef Wehner | alfa
Further information:
http://www.conweaver.de

Further reports about: CERN ConWeaver Grid Computing Grids IGD Large Hadron Collider Semantics grid infrastructure

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>