Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative research brings quantum computers one step closer

06.08.2008
Complex computer encryption codes could be solved and new drug design developed significantly faster thanks to new research carried out by the University of Surrey. The results bring the reality of a workable quantum computer one step closer, proving for the first time that it is possible to make these computers in silicon rather than a vacuum, which has been the focus of previous research.

Quantum computing has the potential to fix problems that would normally take millions of years to solve, much faster than ordinary computers. For these quantum computers to work, atoms need to be kept fixed in space, allowing them to move in an undisturbed oscillating wave motion. This atomic quantum wave holds much more information than a normal computer bit, meaning the computer logic and programmes needed to crack a code are more powerful, and therefore much faster.

Previous research has only succeeded in creating some building blocks for a quantum computer by using atoms suspended in a vacuum. However it has not been possible to make enough for a whole computer as scientists can only hold a limited number of atoms in place for a short period of time. Using atoms trapped in a silicon crystal, the research team, which also involved scientists from University College London and Heriot-Watt University, showed that the quantum waves oscillate long enough for a computer operation, and now hope to produce a higher number of computer bits.

“These results are a significant step forward in the development of quantum computing,” commented research leader Professor Ben Murdin from the University of Surrey. “We hope that this work will open up a new field of physics, where quantum coherence can be explored in solid crystals, but at the same time we have brought a scalable silicon quantum computer a step nearer.”

The researchers used the ‘free electron laser’ FELIX in the Netherlands to carry out the work which has been published in Proceedings of the National Academy of Sciences of the USA.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>