Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inkjet-printed liquid metal could bring wearable tech, soft robotics

09.04.2015

New research shows how inkjet-printing technology can be used to mass-produce electronic circuits made of liquid-metal alloys for "soft robots" and flexible electronics.

Elastic technologies could make possible a new class of pliable robots and stretchable garments that people might wear to interact with computers or for therapeutic purposes. However, new manufacturing techniques must be developed before soft machines become commercially feasible, said Rebecca Kramer, an assistant professor of mechanical engineering at Purdue University.


New research shows how inkjet-printing technology can be used to mass-produce electronic circuits made of liquid-metal alloys for 'soft robots' and flexible electronics.

Credit: Alex Bottiglio/Purdue University

"We want to create stretchable electronics that might be compatible with soft machines, such as robots that need to squeeze through small spaces, or wearable technologies that aren't restrictive of motion," she said. "Conductors made from liquid metal can stretch and deform without breaking."

A new potential manufacturing approach focuses on harnessing inkjet printing to create devices made of liquid alloys.

"This process now allows us to print flexible and stretchable conductors onto anything, including elastic materials and fabrics," Kramer said.

A research paper about the method will appear on April 18 in the journal Advanced Materials. The paper generally introduces the method, called mechanically sintered gallium-indium nanoparticles, and describes research leading up to the project. It was authored by postdoctoral researcher John William Boley, graduate student Edward L. White and Kramer.

A printable ink is made by dispersing the liquid metal in a non-metallic solvent using ultrasound, which breaks up the bulk liquid metal into nanoparticles. This nanoparticle-filled ink is compatible with inkjet printing.

"Liquid metal in its native form is not inkjet-able," Kramer said. "So what we do is create liquid metal nanoparticles that are small enough to pass through an inkjet nozzle. Sonicating liquid metal in a carrier solvent, such as ethanol, both creates the nanoparticles and disperses them in the solvent. Then we can print the ink onto any substrate. The ethanol evaporates away so we are just left with liquid metal nanoparticles on a surface."

After printing, the nanoparticles must be rejoined by applying light pressure, which renders the material conductive. This step is necessary because the liquid-metal nanoparticles are initially coated with oxidized gallium, which acts as a skin that prevents electrical conductivity.

"But it's a fragile skin, so when you apply pressure it breaks the skin and everything coalesces into one uniform film," Kramer said. "We can do this either by stamping or by dragging something across the surface, such as the sharp edge of a silicon tip."

The approach makes it possible to select which portions to activate depending on particular designs, suggesting that a blank film might be manufactured for a multitude of potential applications.

"We selectively activate what electronics we want to turn on by applying pressure to just those areas," said Kramer, who this year was awarded an Early Career Development award from the National Science Foundation, which supports research to determine how to best develop the liquid-metal ink.

The process could make it possible to rapidly mass-produce large quantities of the film.

Future research will explore how the interaction between the ink and the surface being printed on might be conducive to the production of specific types of devices.

"For example, how do the nanoparticles orient themselves on hydrophobic versus hydrophilic surfaces? How can we formulate the ink and exploit its interaction with a surface to enable self-assembly of the particles?" she said.

The researchers also will study and model how individual particles rupture when pressure is applied, providing information that could allow the manufacture of ultrathin traces and new types of sensors.

###

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Rebecca Kramer, 765-494-2219, rebeccakramer@purdue.edu

Related website:

Rebecca Kramer's lab: https://engineering.purdue.edu/faboratory

PHOTO CAPTION:

This artistic rendering depicts electronic devices created using a new inkjet-printing technology to produce circuits made of liquid-metal alloys for "soft robots" and flexible electronics. Elastic technologies could make possible a new class of pliable robots and stretchable garments that people might wear to interact with computers or for therapeutic purposes. (Alex Bottiglio/Purdue University

A publication-quality image is available at https://news.uns.purdue.edu/images/2015/kramer-inkjet.jpg

ABSTRACT

Mechanically Sintered Gallium-Indium Nanoparticles

John William Boley, Edward L. White, and Rebecca K. Kramer*

School of Mechanical Engineering, Purdue University

E-mail: rebeccakramer@purdue.edu

Metallic nanoparticles (MNPs) have been used since ancient times.[1] Recent advancements in science and engineering have demonstrated the utilization of MNPs for applications in a broad array of fields, including optics,[2] medicine,[3] memory,[4-6] and semiconductors.[7] Many current applications require a sin- tering step in order to coalesce the deposited MNPs to enable functionality; whether it be thermal,[8,9] photonic,[10-12] plas- matic,[13] or chemical in nature.[14-16] Although ambient and local temperatures of current sintering methods are signifi- cantly lower than the melting point of the bulk materials, dif- ficulties can still arise when integrating MNPs into functional devices with other materials such as chemically or thermally sensitive polymers. Here, we introduce a new class of MNPs that are "mechanically sintered" at and below room tempera- ture. Using eutectic gallium-indium (EGaIn) MNPs coated with Ga2O3 or thiol, we demonstrate particle coalescence via the application of low pressures, which ruptures the particle coatings and releases the low-viscosity liquid-metal. This phe- nomenon is observed morphologically through scanning elec- tron imaging and electrically through two-probe measurements during compression. Fusing the results of this study with the unique properties of EGaIn and the semiconductive nature of Ga2O3 [17] will facilitate new applications across a broad array of fields such as soft robotics, conformable electronics, wireless communications, micro/nanofluidics, wearable/implantable devices, and energy storage and transport systems. We also demonstrate that EGaIn MNPs are compatible with scalable additive manufacturing technologies such as inkjet printing and can be used to fabricate flexible/stretchable integrated devices across multiple length scales.

Note to Journalists: Journalists may obtain a copy of the research paper by contacting Emil Venere, 765-494-4709, venere@purdue.edu.

Media Contact

Emil Venere
venere@purdue.edu
765-494-4709

 @PurdueUnivNews

http://www.purdue.edu/ 

Emil Venere | EurekAlert!

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>