Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information technology: Improving the health of machines

14.03.2013
Electronic engineers in Singapore have developed and successfully tested a management system that increases the efficiency of wireless sensor networks for monitoring machine health.
A novel adaptive management system boosts the efficiency of wireless sensor networks that monitor surrounding environments

Electronic engineers in Singapore have developed and successfully tested a management system that increases the efficiency of wireless sensor networks for monitoring machine health. The new system, known as an adaptive classification system (ACS), reduces the power consumption of individual sensors and increases their lifespan, while also decreasing network traffic and data storage requirements.

The ACS also achieves more robust results in terms of diagnosis of machine problems and prognosis of performance. “Other applications include monitoring patient health, disaster monitoring systems, such as fire alarms, and environmental monitoring for chemical plant accidents, air and water quality,” says Minh Nhut Nguyen of the A*STAR Institute for Infocomm Research, who led the research team.

Wireless sensors are now so inexpensive and flexible that their application in monitoring systems is widespread. Because of the environments in which they are deployed, sensors increasingly require their own portable power source, typically a battery, which means they have a limited lifespan. Any way of reducing the amount of power the sensors draw would increase their lifespan, decrease the need to replace them and therefore reduce costs, Nguyen explains.

Reducing sensor sampling rates to a practical minimum is one way to lower power consumption; this can be achieved by halting monitoring when a machine is not operating. Typically, a machine functioning smoothly demands a lower and coarser sampling rate than one that needs attention. Nguyen and his co-

workers therefore developed their ACS along these lines.

Importantly, it incorporates an adaptive system of nested sensors. Some of the ACS sensors sample particular parameters at a low rate to provide data for a model whose purpose is simply to trigger more intensive sampling of other sensors when a potential problem is detected.

In addition, the system utilizes a set of models that is geared to sensors sampling at a particular rate. The ACS also integrates several different methods of classifying whether particular data patterns are of concern such that they require higher levels of sampling. Decisions are therefore made on the basis of multiple classifications. This not only increases the robustness of the system, but also means that it can be trained to detect problems using a minimal amount of data.

Nguyen and his team tested the ACS using a machinery fault simulator, a machine in which key components, such as bearings, could be replaced by faulty or worn ones. Encouragingly, on average the ACS outperformed current models in these tests.

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Journal information

Nguyen, M. N., Bao, C., Tew, K. L., Teddy, S. D. & Li, X.-L. Ensemble based real-time adaptive classification system for intelligent sensing machine diagnostics. IEEE Transactions on Reliability 61, 303–313 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>