Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information technology: Improving the health of machines

14.03.2013
Electronic engineers in Singapore have developed and successfully tested a management system that increases the efficiency of wireless sensor networks for monitoring machine health.
A novel adaptive management system boosts the efficiency of wireless sensor networks that monitor surrounding environments

Electronic engineers in Singapore have developed and successfully tested a management system that increases the efficiency of wireless sensor networks for monitoring machine health. The new system, known as an adaptive classification system (ACS), reduces the power consumption of individual sensors and increases their lifespan, while also decreasing network traffic and data storage requirements.

The ACS also achieves more robust results in terms of diagnosis of machine problems and prognosis of performance. “Other applications include monitoring patient health, disaster monitoring systems, such as fire alarms, and environmental monitoring for chemical plant accidents, air and water quality,” says Minh Nhut Nguyen of the A*STAR Institute for Infocomm Research, who led the research team.

Wireless sensors are now so inexpensive and flexible that their application in monitoring systems is widespread. Because of the environments in which they are deployed, sensors increasingly require their own portable power source, typically a battery, which means they have a limited lifespan. Any way of reducing the amount of power the sensors draw would increase their lifespan, decrease the need to replace them and therefore reduce costs, Nguyen explains.

Reducing sensor sampling rates to a practical minimum is one way to lower power consumption; this can be achieved by halting monitoring when a machine is not operating. Typically, a machine functioning smoothly demands a lower and coarser sampling rate than one that needs attention. Nguyen and his co-

workers therefore developed their ACS along these lines.

Importantly, it incorporates an adaptive system of nested sensors. Some of the ACS sensors sample particular parameters at a low rate to provide data for a model whose purpose is simply to trigger more intensive sampling of other sensors when a potential problem is detected.

In addition, the system utilizes a set of models that is geared to sensors sampling at a particular rate. The ACS also integrates several different methods of classifying whether particular data patterns are of concern such that they require higher levels of sampling. Decisions are therefore made on the basis of multiple classifications. This not only increases the robustness of the system, but also means that it can be trained to detect problems using a minimal amount of data.

Nguyen and his team tested the ACS using a machinery fault simulator, a machine in which key components, such as bearings, could be replaced by faulty or worn ones. Encouragingly, on average the ACS outperformed current models in these tests.

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Journal information

Nguyen, M. N., Bao, C., Tew, K. L., Teddy, S. D. & Li, X.-L. Ensemble based real-time adaptive classification system for intelligent sensing machine diagnostics. IEEE Transactions on Reliability 61, 303–313 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>