Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information technology: Improving the health of machines

14.03.2013
Electronic engineers in Singapore have developed and successfully tested a management system that increases the efficiency of wireless sensor networks for monitoring machine health.
A novel adaptive management system boosts the efficiency of wireless sensor networks that monitor surrounding environments

Electronic engineers in Singapore have developed and successfully tested a management system that increases the efficiency of wireless sensor networks for monitoring machine health. The new system, known as an adaptive classification system (ACS), reduces the power consumption of individual sensors and increases their lifespan, while also decreasing network traffic and data storage requirements.

The ACS also achieves more robust results in terms of diagnosis of machine problems and prognosis of performance. “Other applications include monitoring patient health, disaster monitoring systems, such as fire alarms, and environmental monitoring for chemical plant accidents, air and water quality,” says Minh Nhut Nguyen of the A*STAR Institute for Infocomm Research, who led the research team.

Wireless sensors are now so inexpensive and flexible that their application in monitoring systems is widespread. Because of the environments in which they are deployed, sensors increasingly require their own portable power source, typically a battery, which means they have a limited lifespan. Any way of reducing the amount of power the sensors draw would increase their lifespan, decrease the need to replace them and therefore reduce costs, Nguyen explains.

Reducing sensor sampling rates to a practical minimum is one way to lower power consumption; this can be achieved by halting monitoring when a machine is not operating. Typically, a machine functioning smoothly demands a lower and coarser sampling rate than one that needs attention. Nguyen and his co-

workers therefore developed their ACS along these lines.

Importantly, it incorporates an adaptive system of nested sensors. Some of the ACS sensors sample particular parameters at a low rate to provide data for a model whose purpose is simply to trigger more intensive sampling of other sensors when a potential problem is detected.

In addition, the system utilizes a set of models that is geared to sensors sampling at a particular rate. The ACS also integrates several different methods of classifying whether particular data patterns are of concern such that they require higher levels of sampling. Decisions are therefore made on the basis of multiple classifications. This not only increases the robustness of the system, but also means that it can be trained to detect problems using a minimal amount of data.

Nguyen and his team tested the ACS using a machinery fault simulator, a machine in which key components, such as bearings, could be replaced by faulty or worn ones. Encouragingly, on average the ACS outperformed current models in these tests.

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Journal information

Nguyen, M. N., Bao, C., Tew, K. L., Teddy, S. D. & Li, X.-L. Ensemble based real-time adaptive classification system for intelligent sensing machine diagnostics. IEEE Transactions on Reliability 61, 303–313 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>