Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information storage for the next generation of plastic computers

17.04.2014

Efficient conversion from magnetic storage to light is key

Inexpensive computers, cell phones and other systems that substitute flexible plastic for silicon chips may be one step closer to reality, thanks to research published on April 16 in the journal Nature Communications.

The paper describes a new proposal by University of Iowa researchers and their colleagues at New York University for overcoming a major obstacle to the development of such plastic devices—the large amount of energy required to read stored information.

Although it is relatively cheap and easy to encode information in light for fiber optic transmission, storing information is most efficiently done using magnetism, which ensures information will survive for years without any additional power.

“So a critical issue is how to convert information from one type to another,” says Michael Flatté, professor of physics and astronomy in the College of Liberal Arts and Sciences (CLAS) and director of the UI Optical Science and Technology Center.

“Although it does not cost a lot of energy to convert one to the other in ordinary, silicon-chip-based computers, the energy cost is very high for flexible, plastic computing devices that are hoped to be used for inexpensive “throwaway” information processors.

“Here we show an efficient means of converting information encoded in magnetic storage to light in a flexible plastic device,” says Flatté, who also serves as professor in the UI College of Engineering’s Department of Electrical and Computer Engineering.

What Flatté and his colleagues did was to successfully accomplish information transduction (or transfer and conversion) between a magnet and an organic light-emitting diode at room temperature and without electrical current flow between the magnet and the organic device.

“The magnetic fields from the magnetic storage device directly modify the light emission from the device. This could help solve problems of storage and communication for new types of inexpensive, low-power computers based on conducting plastics,” says professor Markus Wohlgenannt, also of the Department of Physics and Astronomy and the Optical Science and Technology Center.

Professor Andrew Kent of New York University notes that while these studies were conducted on relatively large devices, miniaturized devices would operate on the same principles and enable new types of high capacity storage technologies.

In addition to Flatté, Wohlgenannt and Kent, co-authors of the Nature Communications paper are Fujian Wang and Nicolas J. Harmon of the UI Department of Physics and Astronomy and Optical Science and Technology Center, and Ferran Macià of the NYU Department of Physics.

The complete title of the paper is “Organic Magnetoelectroluminescence for Room Temperature Transduction between Magnetic and Optical Information.”

The research was funded by the U.S. Army Research Office (ARO) Multidisciplinary University Research Initiative (MURI) grant #W911NF-08-1-0317 and F. Macià also by EC-MC grant IOF-253214.

Contacts

Gary Galluzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | Eurek Alert!

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>