Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information storage for the next generation of plastic computers

17.04.2014

Efficient conversion from magnetic storage to light is key

Inexpensive computers, cell phones and other systems that substitute flexible plastic for silicon chips may be one step closer to reality, thanks to research published on April 16 in the journal Nature Communications.

The paper describes a new proposal by University of Iowa researchers and their colleagues at New York University for overcoming a major obstacle to the development of such plastic devices—the large amount of energy required to read stored information.

Although it is relatively cheap and easy to encode information in light for fiber optic transmission, storing information is most efficiently done using magnetism, which ensures information will survive for years without any additional power.

“So a critical issue is how to convert information from one type to another,” says Michael Flatté, professor of physics and astronomy in the College of Liberal Arts and Sciences (CLAS) and director of the UI Optical Science and Technology Center.

“Although it does not cost a lot of energy to convert one to the other in ordinary, silicon-chip-based computers, the energy cost is very high for flexible, plastic computing devices that are hoped to be used for inexpensive “throwaway” information processors.

“Here we show an efficient means of converting information encoded in magnetic storage to light in a flexible plastic device,” says Flatté, who also serves as professor in the UI College of Engineering’s Department of Electrical and Computer Engineering.

What Flatté and his colleagues did was to successfully accomplish information transduction (or transfer and conversion) between a magnet and an organic light-emitting diode at room temperature and without electrical current flow between the magnet and the organic device.

“The magnetic fields from the magnetic storage device directly modify the light emission from the device. This could help solve problems of storage and communication for new types of inexpensive, low-power computers based on conducting plastics,” says professor Markus Wohlgenannt, also of the Department of Physics and Astronomy and the Optical Science and Technology Center.

Professor Andrew Kent of New York University notes that while these studies were conducted on relatively large devices, miniaturized devices would operate on the same principles and enable new types of high capacity storage technologies.

In addition to Flatté, Wohlgenannt and Kent, co-authors of the Nature Communications paper are Fujian Wang and Nicolas J. Harmon of the UI Department of Physics and Astronomy and Optical Science and Technology Center, and Ferran Macià of the NYU Department of Physics.

The complete title of the paper is “Organic Magnetoelectroluminescence for Room Temperature Transduction between Magnetic and Optical Information.”

The research was funded by the U.S. Army Research Office (ARO) Multidisciplinary University Research Initiative (MURI) grant #W911NF-08-1-0317 and F. Macià also by EC-MC grant IOF-253214.

Contacts

Gary Galluzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | Eurek Alert!

More articles from Information Technology:

nachricht 'Magic' sphere for information transfer
24.08.2015 | Lomonosov Moscow State University

nachricht Fraunhofer IPA develops prototype of intelligent care cart
20.08.2015 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>