Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information storage for the next generation of plastic computers

17.04.2014

Efficient conversion from magnetic storage to light is key

Inexpensive computers, cell phones and other systems that substitute flexible plastic for silicon chips may be one step closer to reality, thanks to research published on April 16 in the journal Nature Communications.

The paper describes a new proposal by University of Iowa researchers and their colleagues at New York University for overcoming a major obstacle to the development of such plastic devices—the large amount of energy required to read stored information.

Although it is relatively cheap and easy to encode information in light for fiber optic transmission, storing information is most efficiently done using magnetism, which ensures information will survive for years without any additional power.

“So a critical issue is how to convert information from one type to another,” says Michael Flatté, professor of physics and astronomy in the College of Liberal Arts and Sciences (CLAS) and director of the UI Optical Science and Technology Center.

“Although it does not cost a lot of energy to convert one to the other in ordinary, silicon-chip-based computers, the energy cost is very high for flexible, plastic computing devices that are hoped to be used for inexpensive “throwaway” information processors.

“Here we show an efficient means of converting information encoded in magnetic storage to light in a flexible plastic device,” says Flatté, who also serves as professor in the UI College of Engineering’s Department of Electrical and Computer Engineering.

What Flatté and his colleagues did was to successfully accomplish information transduction (or transfer and conversion) between a magnet and an organic light-emitting diode at room temperature and without electrical current flow between the magnet and the organic device.

“The magnetic fields from the magnetic storage device directly modify the light emission from the device. This could help solve problems of storage and communication for new types of inexpensive, low-power computers based on conducting plastics,” says professor Markus Wohlgenannt, also of the Department of Physics and Astronomy and the Optical Science and Technology Center.

Professor Andrew Kent of New York University notes that while these studies were conducted on relatively large devices, miniaturized devices would operate on the same principles and enable new types of high capacity storage technologies.

In addition to Flatté, Wohlgenannt and Kent, co-authors of the Nature Communications paper are Fujian Wang and Nicolas J. Harmon of the UI Department of Physics and Astronomy and Optical Science and Technology Center, and Ferran Macià of the NYU Department of Physics.

The complete title of the paper is “Organic Magnetoelectroluminescence for Room Temperature Transduction between Magnetic and Optical Information.”

The research was funded by the U.S. Army Research Office (ARO) Multidisciplinary University Research Initiative (MURI) grant #W911NF-08-1-0317 and F. Macià also by EC-MC grant IOF-253214.

Contacts

Gary Galluzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | Eurek Alert!

More articles from Information Technology:

nachricht NASA's ICESat-2 equipped with unique 3-D manufactured part
03.02.2016 | NASA/Goddard Space Flight Center

nachricht Energy-saving minicomputers for the ‘Internet of Things’
29.01.2016 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>