Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Informatics = essential MD competency

15.09.2010
JAMA article recommends biomedical informatics in education of physicians

In an article published in the Sept. 15 edition of the Journal of the American Medical Association, (JAMA), author Edward H. Shortliffe, MD, PhD, points out that although information underlies all clinical work, and despite the growing role that information management and access play in healthcare delivery and clinical support, there is a dearth of informatics competency being developed in America's future corps of physicians. Formalized education in the application of informatics and the use and methodologies of health information technology and exchange, Dr. Shortliffe observes, is not typically a specific part of medical education.

In his article, "Biomedical Informatics in the Education of Physicians," Dr. Shortliffe writes that knowledge management is key to clinical decision-making and yet "a coherent approach to information and knowledge management and their application has generally not been part of medical education." He identifies and defines the formal discipline missing from medical school curricula: biomedical and health informatics, defined as "the interdisciplinary, scientific field that studies and pursues the effective uses of biomedical data, information, and knowledge for scientific inquiry, problem-solving and decision-making, motivated by efforts to improve human health."

Biomedical informatics has four major areas of applications, Dr. Shortliffe writes: bioinformatics, encompassing molecular and cellular processes; imaging informatics (of tissues and organ systems); clinical informatics, which relates to individuals and patients; and public health informatics, which focuses on populations and society (e.g., disease control, epidemic surveillance, vaccine development). More specific subareas also contribute to the major applications: nursing informatics, pharmacogenomics, and consumer health informatics, to name a few.

Dr. Shortliffe observes that medical students need to learn both the practical applied side of informatics and the core concepts that will remain valuable throughout careers practicing medicine or conducting research in the computer age. To function successfully as physicians, medical students also need to learn about the value and role of online bibliographic databases, the role of order-entry systems, electronic health records, regional data exchanges, telemedicine and other current informatics applications in health and medicine, says Shortliffe.

"Biomedical informatics is not a topic that is optimally taught in a single course during the preclinical years," says Dr. Shortliffe, "but rather should be blended into the four-year curriculum. . ..with the use of clinical examples and challenges to motivate and direct the grasp of informatics concepts."

Dr. Shortliffe is a professor in the School of Biomedical Informatics at UTHealth, Houston, and editor-in-chief of the Journal of Biomedical Informatics. He is also President and CEO of the American Medical Informatics Association (AMIA), the leading professional association of informatics professionals and an important player in medicine, health care, and science, that serves as the voice of the nation's top biomedical and health informatics professionals.

Nancy Light | EurekAlert!
Further information:
http://www.amia.org

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>