Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing Efficiency of Wireless Networks

14.11.2012
New method developed by researchers could have broad impacts on the mobile Internet and wireless industries
Two professors at the University of California, Riverside Bourns College of Engineering have developed a new method that doubles the efficiency of wireless networks and could have a large impact on the mobile Internet and wireless industries.

Efficiency of wireless networks is key because there is a limited amount of spectrum to transmit voice, text and Internet services, such as streaming video and music. And when spectrum does become available it can fetch billions of dollars at auction.

The “spectrum crunch” is quickly being accelerated as customers convert from traditional cell phones to smartphones and tablets. For example, tablets generate 121 times more traffic than a traditional cell phone.

Without making networks more efficient, customers are likely to drop more calls, pay more money for service, endure slower data speed and not see an unlimited data plan again.

The UC Riverside findings were outlined in a paper titled “A method for broadband full-duplex MIMO radio” recently published online in the journal IEEE Signal Processing Letters. It was co-authored by Yingbo Hua and Ping Liang, who are both electrical engineering professors, and three of their graduate students: Yiming Ma, Ali Cagatay Cirik and Qian Gao.
Current radios for wireless communications are half-duplex, meaning signals are transmitted and received in two separate channels. Full duplex radios, which transmit signals at the same time in the same frequency band, can double the efficiency of the spectrum.

However, to make a full duplex radio, one must solve a problem: interference between the transmission and receiving functions. The technology of full duplex radio is not yet ready for the current 3G and 4G networks.

The interference caused by signals from cell towers could be billions times more powerful than the ones towers are trying to pick up from a user’s smartphone. As a result, incoming signals would get drowned out.

The UC Riverside researchers have found a new solution called “time-domain transmit beamforming”, which digitally creates a time-domain cancellation signal, couples it to the radio frequency frontend to allow the radio to hear much weaker incoming signals while transmitting strong outgoing signals at the same frequency and same time.

This new solution is indispensable for a full-duplex radio in general while it is complementary to other required solutions or components. The new solution not only has a sound theoretical proof, but also leads to a lower cost, faster and more accurate channel estimation for robust and effective cancellation.

“We believe the future applications of full duplex radios are huge, ranging from cell towers, backhaul networks and wireless regional area networks to billions handheld devices for data intensive application such as FaceTime,” said Liang, who added that the researchers have had discussions with several major wireless telecommunication equipment companies.

Liang and Hua believe their research has commercial potential in part because most of the core components required are digital and therefore costly new components won’t need to be added to existing infrastructure.

Liang and Hua also believe cell towers are one of the most likely places to start implementing full-duplex radios, in large part because they are less constrained by existing standards.

Liang and Hua also see applications in cognitive radio, a type of wireless communication in which a transceiver can detect which communication channels are in use and which are not, and move into vacant channels while avoiding occupied ones. While cellular frequency bands are overloaded, other bands, such as military, amateur radio and TV, are often underutilized.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Sean Nealon | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Information Technology:

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>