Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving security with face recognition technology

11.11.2009
University of Miami engineer presents novel methods for 3-D face recognition and for ear and face biometric systems at the 2009 IEEE International Conference on Image Processing in Cairo, Egypt, on Saturday, Nov. 7-Tuesday, Nov. 10

A number of U.S. states now use facial recognition technology when issuing drivers licenses. Similar methods are also used to grant access to buildings and to verify the identities of international travelers. Historically, obtaining accurate results with this type of technology has been a time intensive activity. Now, a researcher from the University of Miami College of Engineering and his collaborators have developed ways to make the technology more efficient while improving accuracy.


This photo shows how to determine discriminative anatomical point pairings using Adaboost for 3-D face recognition. Credit: University of Miami

Mohamed Abdel-Mottaleb, professor and chair in the UM Department of Electrical and Computer Engineering has developed state-of-the-art systems capable of photographing an image of someone's face and ear and comparing it against pre-stored images of the same person, with 95-100 percent accuracy.

Abdel-Mottaleb presented his findings at the 2009 IEEE International Conference on Image Processing in Cairo, Egypt on Saturday, November 7 - Tuesday, November 10. He describes his research as "satisfying, especially when you know that what you're doing has real-world applications that will benefit people and enhance personal security."

The systems the researchers have designed can use 3-D facial images, or combine 2-D images of the face with 3-D models of the ear, which they construct from a sequence of video frames, to identify people by unique facial features and ear shapes.

In the first method, the researchers use 3-D facial images with over 95 percent recognition rate, in the lab setting. Conventional shape matching methods commonly used in 3-D face recognition are time consuming. Abdel-Mottaleb uses a method that effectively increases computational efficiency while maintaining an acceptable recognition rate. He reduces the number of vertices (distinguishable landmarks of each face) considered when matching 3-D facial data, by automatically selecting the most discriminative facial regions. These automatically selected landmarks were found to be primarily within the regions of the nose, eye brows, mouth, and chin.

The second method called "Multi-Modal Ear and Face Modeling and Recognition" obtains a set of facial landmarks from frontal facial images and combines this data with a 3-D ear recognition component-- a much more difficult identification process given the technique's sensitivity to lighting conditions.

Fusing the scores of these two modalities, the researchers achieved an identification rate of 100 percent in the lab. "No single approach can give you 100 percent accuracy," Abdel-Mottaleb says. "One way to increase the accuracy is to use different biometrics and then combine them."

These high-tech identification tools help fight crime, and enforce border security. In the future, the researchers hope to expand their techniques to faces demonstrating facial expressions and to recognize faces using only profile images.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. www.miami.edu

Marie Guma-Diaz | EurekAlert!
Further information:
http://www.umiami.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>