Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Improving security with face recognition technology

University of Miami engineer presents novel methods for 3-D face recognition and for ear and face biometric systems at the 2009 IEEE International Conference on Image Processing in Cairo, Egypt, on Saturday, Nov. 7-Tuesday, Nov. 10

A number of U.S. states now use facial recognition technology when issuing drivers licenses. Similar methods are also used to grant access to buildings and to verify the identities of international travelers. Historically, obtaining accurate results with this type of technology has been a time intensive activity. Now, a researcher from the University of Miami College of Engineering and his collaborators have developed ways to make the technology more efficient while improving accuracy.

This photo shows how to determine discriminative anatomical point pairings using Adaboost for 3-D face recognition. Credit: University of Miami

Mohamed Abdel-Mottaleb, professor and chair in the UM Department of Electrical and Computer Engineering has developed state-of-the-art systems capable of photographing an image of someone's face and ear and comparing it against pre-stored images of the same person, with 95-100 percent accuracy.

Abdel-Mottaleb presented his findings at the 2009 IEEE International Conference on Image Processing in Cairo, Egypt on Saturday, November 7 - Tuesday, November 10. He describes his research as "satisfying, especially when you know that what you're doing has real-world applications that will benefit people and enhance personal security."

The systems the researchers have designed can use 3-D facial images, or combine 2-D images of the face with 3-D models of the ear, which they construct from a sequence of video frames, to identify people by unique facial features and ear shapes.

In the first method, the researchers use 3-D facial images with over 95 percent recognition rate, in the lab setting. Conventional shape matching methods commonly used in 3-D face recognition are time consuming. Abdel-Mottaleb uses a method that effectively increases computational efficiency while maintaining an acceptable recognition rate. He reduces the number of vertices (distinguishable landmarks of each face) considered when matching 3-D facial data, by automatically selecting the most discriminative facial regions. These automatically selected landmarks were found to be primarily within the regions of the nose, eye brows, mouth, and chin.

The second method called "Multi-Modal Ear and Face Modeling and Recognition" obtains a set of facial landmarks from frontal facial images and combines this data with a 3-D ear recognition component-- a much more difficult identification process given the technique's sensitivity to lighting conditions.

Fusing the scores of these two modalities, the researchers achieved an identification rate of 100 percent in the lab. "No single approach can give you 100 percent accuracy," Abdel-Mottaleb says. "One way to increase the accuracy is to use different biometrics and then combine them."

These high-tech identification tools help fight crime, and enforce border security. In the future, the researchers hope to expand their techniques to faces demonstrating facial expressions and to recognize faces using only profile images.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world.

Marie Guma-Diaz | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>