Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving security with face recognition technology

11.11.2009
University of Miami engineer presents novel methods for 3-D face recognition and for ear and face biometric systems at the 2009 IEEE International Conference on Image Processing in Cairo, Egypt, on Saturday, Nov. 7-Tuesday, Nov. 10

A number of U.S. states now use facial recognition technology when issuing drivers licenses. Similar methods are also used to grant access to buildings and to verify the identities of international travelers. Historically, obtaining accurate results with this type of technology has been a time intensive activity. Now, a researcher from the University of Miami College of Engineering and his collaborators have developed ways to make the technology more efficient while improving accuracy.


This photo shows how to determine discriminative anatomical point pairings using Adaboost for 3-D face recognition. Credit: University of Miami

Mohamed Abdel-Mottaleb, professor and chair in the UM Department of Electrical and Computer Engineering has developed state-of-the-art systems capable of photographing an image of someone's face and ear and comparing it against pre-stored images of the same person, with 95-100 percent accuracy.

Abdel-Mottaleb presented his findings at the 2009 IEEE International Conference on Image Processing in Cairo, Egypt on Saturday, November 7 - Tuesday, November 10. He describes his research as "satisfying, especially when you know that what you're doing has real-world applications that will benefit people and enhance personal security."

The systems the researchers have designed can use 3-D facial images, or combine 2-D images of the face with 3-D models of the ear, which they construct from a sequence of video frames, to identify people by unique facial features and ear shapes.

In the first method, the researchers use 3-D facial images with over 95 percent recognition rate, in the lab setting. Conventional shape matching methods commonly used in 3-D face recognition are time consuming. Abdel-Mottaleb uses a method that effectively increases computational efficiency while maintaining an acceptable recognition rate. He reduces the number of vertices (distinguishable landmarks of each face) considered when matching 3-D facial data, by automatically selecting the most discriminative facial regions. These automatically selected landmarks were found to be primarily within the regions of the nose, eye brows, mouth, and chin.

The second method called "Multi-Modal Ear and Face Modeling and Recognition" obtains a set of facial landmarks from frontal facial images and combines this data with a 3-D ear recognition component-- a much more difficult identification process given the technique's sensitivity to lighting conditions.

Fusing the scores of these two modalities, the researchers achieved an identification rate of 100 percent in the lab. "No single approach can give you 100 percent accuracy," Abdel-Mottaleb says. "One way to increase the accuracy is to use different biometrics and then combine them."

These high-tech identification tools help fight crime, and enforce border security. In the future, the researchers hope to expand their techniques to faces demonstrating facial expressions and to recognize faces using only profile images.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. www.miami.edu

Marie Guma-Diaz | EurekAlert!
Further information:
http://www.umiami.edu

More articles from Information Technology:

nachricht Researchers illuminate the path to a new era of microelectronics
23.04.2018 | Boston University College of Engineering

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>