Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved method developed to locate ships in storms

02.03.2011
There are already systems that detect ships at sea, but a group of engineers from the UAH, led by the researcher Raúl Vicen, has introduced a new development, involving "the use of artificial intelligence techniques and improvements in the templates used to select input data".

The team has come up with a new detection method "that outperforms the one that has generally been used until now, as well as offering the advantages of low computational costs, and which can also be used in real time".

The new system, the details of which are published in the journal IET Radar, Sonar & Navigation, involves firstly gathering information from radar data using a series of templates designed by the scientists. This phase makes use of regular radar tracking data (both horizontal and vertical), as well as other more advanced modes (diagonal).

An artificial neural network architecture called a "multilayer perceptron" that is capable of learning from its environment, is then used. This makes it possible to differentiate between ships and waves in the confused radar images seen during storms.

Test passed in the North Sea

The technique has been successfully trialled using data from an X-band sea radar system (the most common in these kinds of devices, with frequencies of between 7 and 12.5 gigahertz), located on the German FINO-1 research platform in the North Sea.

"The fact that we obtained results with real data shows that this method can be installed in ship and ocean platform radar systems, without any problem", the authors explain.

According to the study, this system offers "substantial" improvements in comparison with the conventional systems used for detecting ships, such as the CA-CFAR technique (Cell Averaging-Constant False Alarm Rate). Radar systems usually use these algorithms to detect targets among the waves, or 'sea clutter', but the proposed system "outperforms the current systems in terms of its detection rates".

References: R. Vicen-Bueno R., Carrasco-Álvarez M.P., Jarabo-Amores J.C., Nieto-Borge y M. Rosa-Zurera. "Ship detection by different data selection templates and multilayer perceptrons from incoherent maritime radar data". IET Radar, Sonar & Navigation 5(2): 144-154, February 2011. DOI: 10.1049/iet-rsn.2010.0001

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>