Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved computer simulations enable better calculation of interfacial tension

20.05.2014

Researchers from Mainz University identify novel mechanisms of logarithmic finite-size corrections relevant to the determination of interfacial tension

Computer simulations play an increasingly important role in the description and development of new materials. Yet, despite major advances in computer technology, the simulations in statistical physics are typically restricted to systems of up to a few 100,000 particles, which is many times smaller than the actual material quantities used in typical experiments.


At coexistence, the crystal (red) and the fluid (blue) are separated by interfaces. The simulation box shown here contains 3,660 hard sphere particles. Using periodic boundary conditions and finite-size scaling (systematic variation of the box size), computer simulations allow high precision measurements of the interfacial tension.

source: Fabian Schmitz, Institute of Physics, JGU

Researchers therefore use so-called finite-size corrections in order to adjust the results obtained for comparatively small simulation systems to the macroscopic scale. A team of researchers from Johannes Gutenberg University Mainz (JGU) has now succeeded in better understanding how this technique works when it is used to assess interfacial tension, thus enabling more accurate predictions.

The interfacial tension is an important physical quantity of many phenomena, such as the nucleation of water droplets in the atmosphere, the crystallization of proteins from solutions, and the growth and stability of nanocrystals. It occurs at the interface between different phases of a material, i.e., on the transition between solid, liquid, and gaseous phases.

However, the interfacial tension is difficult to measure experimentally, and reliable analytical theories about it are also lacking. Thus it is of particular importance to develop computer simulation techniques for this phenomenon.

Using an innovative simulation method, Fabian Schmitz, Dr. Peter Virnau, and Professor Kurt Binder of the Condensed Matter Theory group at JGU's Institute of Physics have now succeeded in gaining a better understanding of the nature of finite-size corrections in the determination of interfacial tension.

This work, achieved only after several million CPU hours on the Mainz supercomputer MOGON, will in the future help researchers to analyze interfacial tension with the highest precision by means of simulations. The results were published in the leading journal Physical Review Letters.

High-performance computing becomes increasingly important at Johannes Gutenberg University Mainz. The planned new supercomputer MOGON II is expected to replace the current system in the first quarter of 2016. It is expected that MOGON II will be among the top 100 fastest high-performance computers worldwide.

Publication:
Fabian Schmitz, Peter Virnau, Kurt Binder
Determination of the Origin and Magnitude of Logarithmic Finite-Size Effects on Interfacial Tension: Role of Interfacial Fluctuations and Domain Breathing
Physical Review Letters, 26 March 2014
DOI: 10.1103/PhysRevLett.112.125701

Further information:
Dipl.-Phys. Fabian Schmitz
Condensed Matter Theory
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-24104
fax +49 6131 39-25441
e-mail: schmifa@uni-mainz.de
http://www.komet331.physik.uni-mainz.de/schmitz.php

Weitere Informationen:

http://www.uni-mainz.de/presse/17291_ENG_HTML.php - press release ;
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.125701 - article ;
http://www.uni-mainz.de/presse/17279_ENG_HTML.php - press release "EUR 8.7 million for new MOGON II high-performance computer at Johannes Gutenberg University Mainz"

Petra Giegerich |
Further information:
http://www.uni-mainz.de

Further reports about: CPU Computer Interfacial Physics Review Tension play proteins transition

More articles from Information Technology:

nachricht Micropatterning OLEDs using electron beam technology
27.04.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Quantum computing closer as RMIT drives towards first quantum data bus
18.04.2016 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>