Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved computer simulations enable better calculation of interfacial tension

20.05.2014

Researchers from Mainz University identify novel mechanisms of logarithmic finite-size corrections relevant to the determination of interfacial tension

Computer simulations play an increasingly important role in the description and development of new materials. Yet, despite major advances in computer technology, the simulations in statistical physics are typically restricted to systems of up to a few 100,000 particles, which is many times smaller than the actual material quantities used in typical experiments.


At coexistence, the crystal (red) and the fluid (blue) are separated by interfaces. The simulation box shown here contains 3,660 hard sphere particles. Using periodic boundary conditions and finite-size scaling (systematic variation of the box size), computer simulations allow high precision measurements of the interfacial tension.

source: Fabian Schmitz, Institute of Physics, JGU

Researchers therefore use so-called finite-size corrections in order to adjust the results obtained for comparatively small simulation systems to the macroscopic scale. A team of researchers from Johannes Gutenberg University Mainz (JGU) has now succeeded in better understanding how this technique works when it is used to assess interfacial tension, thus enabling more accurate predictions.

The interfacial tension is an important physical quantity of many phenomena, such as the nucleation of water droplets in the atmosphere, the crystallization of proteins from solutions, and the growth and stability of nanocrystals. It occurs at the interface between different phases of a material, i.e., on the transition between solid, liquid, and gaseous phases.

However, the interfacial tension is difficult to measure experimentally, and reliable analytical theories about it are also lacking. Thus it is of particular importance to develop computer simulation techniques for this phenomenon.

Using an innovative simulation method, Fabian Schmitz, Dr. Peter Virnau, and Professor Kurt Binder of the Condensed Matter Theory group at JGU's Institute of Physics have now succeeded in gaining a better understanding of the nature of finite-size corrections in the determination of interfacial tension.

This work, achieved only after several million CPU hours on the Mainz supercomputer MOGON, will in the future help researchers to analyze interfacial tension with the highest precision by means of simulations. The results were published in the leading journal Physical Review Letters.

High-performance computing becomes increasingly important at Johannes Gutenberg University Mainz. The planned new supercomputer MOGON II is expected to replace the current system in the first quarter of 2016. It is expected that MOGON II will be among the top 100 fastest high-performance computers worldwide.

Publication:
Fabian Schmitz, Peter Virnau, Kurt Binder
Determination of the Origin and Magnitude of Logarithmic Finite-Size Effects on Interfacial Tension: Role of Interfacial Fluctuations and Domain Breathing
Physical Review Letters, 26 March 2014
DOI: 10.1103/PhysRevLett.112.125701

Further information:
Dipl.-Phys. Fabian Schmitz
Condensed Matter Theory
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-24104
fax +49 6131 39-25441
e-mail: schmifa@uni-mainz.de
http://www.komet331.physik.uni-mainz.de/schmitz.php

Weitere Informationen:

http://www.uni-mainz.de/presse/17291_ENG_HTML.php - press release ;
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.125701 - article ;
http://www.uni-mainz.de/presse/17279_ENG_HTML.php - press release "EUR 8.7 million for new MOGON II high-performance computer at Johannes Gutenberg University Mainz"

Petra Giegerich |
Further information:
http://www.uni-mainz.de

Further reports about: CPU Computer Interfacial Physics Review Tension play proteins transition

More articles from Information Technology:

nachricht New movie screen allows for glasses-free 3-D
26.07.2016 | Massachusetts Institute of Technology, CSAIL

nachricht Hey robot, shimmy like a centipede
22.07.2016 | Kyoto University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Clone Wars – FLI researcher is honored with prestigious Sofja Kovalevskaja Award

27.07.2016 | Awards Funding

New approach for environmental test on livestock drugs

27.07.2016 | Ecology, The Environment and Conservation

Two neonicotinoid insecticides may have inadvertent contraceptive effects on male honey bees

27.07.2016 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>