Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Honeybee’ robots replicate swarm behaviour

18.09.2014

Computer scientists have created a low-cost, autonomous micro-robot which in large numbers can replicate the behaviour of swarming honeybees

Colias - named after a genus of butterfly - is an open-platform system that can be used to investigate collective behaviours and be applied to swarm applications.

Robotic swarms that take inspiration from nature have become a topic of fascination for robotics researchers, whose aim is to study the autonomous behaviour of large numbers of simple robots in order to find technological solutions to common complex tasks.

Due to the hardware complexities and cost of creating robot hardware platforms, current research in swarm robotics is mostly performed by simulation software. However, the simulation of large numbers of these robots in robotic swarm software applications is often inaccurate due to the poor modelling of external conditions.

Colias was created by a team of scientists led by the University of Lincoln, UK, with Tsinghua University in China. It has been proven to be feasible as an autonomous platform - effectively replicating a honeybee swarm. Its small size (4cm diameter) and fast motion (35cm/s) means it can be used in fast-paced swarm scenarios over large areas.

In comparison to other mobile robots which are utilized in swarm robotic research, Colias is a low-cost platform, costing around £25, making the replication of swarm behaviour in large numbers of robots more feasible and economical for researchers.

Farshad Arvin, from the School of Computer Science, University of Lincoln, was part of the research team which developed Colias.

He said: “The platform must be able to imitate swarm behaviours found in nature, such as insects, birds and fish. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. This concept allows for the coordination of simple physical robots in order to cooperatively perform tasks. The decentralised control of robotic swarms can be achieved by providing well-defined interaction rules for each individual robot. Colias has been used in a bio-inspired scenario, showing that it is extremely responsive to being used to investigate collective behaviours. Our aim was to imitate the bio-inspired mechanisms of swarm robots and to enable all research groups, even with limited funding, to perform such research with real robots.”

Long-range infrared proximity sensors allow the robot to communicate with its direct neighbours at a range of 0.5cm to 2m. A combination of three short-range sensors and an independent processor enables the individual robots to detect obstacles.

A similar but more complex mechanism has been found in locust vision, where a specific neuron called the ‘lobula giant movement detector’ reacts to objects approaching the insects’ eyes.

Co-author Professor Shigang Yue, also from Lincoln’s School of Computer Science, previously created a computerised system which supports the autonomous navigation of mobile robots based on the locust’s unique visual system.

This earlier research, published in the International Journal of Advanced Mechatronic Systems (2013), could provide the blueprint for the development of highly accurate vehicle collision sensors, surveillance technology and even aid video game programming.

The next step for the Colias research team is to work on an extension of the vision module using a faster computer processor to implement bio-inspired vision mechanisms.

Full details of their research have been published in the International Journal of Advanced Robotic Systems.

The work is supported by the European Union’s FP7 project EYE2E, which aims to build international capacity and cooperation in the field of biologically inspired visual neural systems.

A video showing the swarming behaviour of Colias robots can be found at: http://youtu.be/xEvWU9FexGU

Full bibliographic informationFarshad Arvin, John Murray, Chun Zang, Shigang Yue ‘Colias: An autonomous micro robot for swarm robotic applications’ International Journal of Advanced Robotic Systems
DOI: 10.5772/58730http://cdn.intechopen.com/pdfs-wm/47293.pdf

Marie Daniels | AlphaGalileo
Further information:
http://www.lincoln.ac.uk

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>