Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitachi and Singapore’s A*STAR Design Novel Method to Reduce Genome Data Storage

31.05.2012
Hitachi and Data Storage Institute (DSI), a research institute of A*STAR are devising a data compression technique to tackle the increasing volume of genome sequencing data generated by the healthcare and biomedical industry.
Contacts:
Hitachi: Satoko Yasunaga
Corporate Communications
Dept., Hitachi Asia Ltd.
+65 6231 2410
ccd@has.hitachi.com.sg

Data Storage Institute(DSI): Melissa Loh
Assistant Manager
Corporate Communications
+65 6874 6852
lohsm@scei.a-star.edu.sg

Hitachi Asia Ltd. (Hitachi) and Data Storage Institute (DSI), a research institute of the Agency for Science, Technology and Research (A*STAR) are devising a data compression technique to tackle the increasing volume of genome sequencing data generated by the healthcare and biomedical industry. As the volume of such data has been forecasted to double annually, the collaborators aim to develop a more efficient data storage technology that will compress genome sequencing data more effectively than existing methods. This is an extension of an earlier partnership, where Hitachi and DSI researchers discovered the pattern of typical genome data transactions that would enable current storage systems to function optimally.

Genome sequencing is a data intensive process and high-powered machines are required to decipher the order of deoxyribonucleic acid (commonly known as DNA) nucleotide bases – Adenine (A), Cytosine (C), Guanine (G), and Thymine (T) that consist within a DNA molecule. A human genome of an individual contains over three billion of these genetic letters and occupies up to 725 MB of uncompressed data. The data multiplies when it is replicated, processed and shared globally among researchers for more experiments which can amount to terabytes of data. Scientists and medical practitioners rely on genome sequence to decode the string of letters and gain a clearer understanding of the human anatomy, how genes interact and affect the growth and development of an organism. This in turn helps identify the causes of common genetic disorders. For instance, sequencing the genes of tumour cells can aid doctors in their study of mutations and differentiate cancerous cells from normal tissues, enabling them to prescribe appropriate drugs that will treat the affected tumours more accurately.

With such tangible medical benefits compounded by the advancement of high throughput sequencers, the use of genetic analysing tool is becoming more widespread and is likely to lead to an overwhelming increase in the velocity, volume and variety of genome data being created. This trend poses significant challenges for data centres to provide high performance storage systems and fast retrieval of large genomic data files. The exponential growth of genome sequencing data will also place pressures on current data centres, slowing down performance levels and creating massive demands for larger hard disk space. Other factors that will drive cost up include the high energy consumption required to power the data centres and the operating cost of maintaining the infrastructure.

In a bid to address the current computational and scalability limitations, DSI researchers were commissioned to study how genome sequencing data is optimised by researchers from Genome Institute of Singapore (GIS), another A*STAR research institute. Research into the characteristics of genome data revealed that existing data compression methods are unlikely to manage current workloads due to inefficiencies and heavy demands for larger memory storage. Building on the collective insights from this earlier project collaboration, Hitachi and DSI are now working towards perfecting the shortfalls identified in current data storage models to design an innovative genome data compression method reduce data storage capacity needs, quicken decompression speeds and lower storage costs.

“By raising compression capacity, we can envision smaller genome sequencing facilities to handle petabytes of data in a year compared to current terabytes levels which are mostly restricted to large genome sequencing centres due to storage limitations. DSI will continue to play a pivotal role in enabling new storage technologies for the biomedical research and healthcare industry to accelerate research findings and discoveries,” said Dr Pantelis Alexopoulos, DSI’s Executive Director.

“We are delighted to continue our long-standing partnership with DSI in the research field of networked storage. As the industry leader in storage technology and bioinformatics software solutions, I am confident that the outcome of this collaboration will lead to more innovative solutions that could potentially be one of Hitachi’s future areas of business expansion,” said Mr Makoto Nagashima, Managing Director of Hitachi Asia Ltd.

About Hitachi Asia Ltd.
Hitachi Asia Ltd., a subsidiary of Hitachi, Ltd., established in Singapore in 1989, operates across six Asian countries (Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam). Business includes information systems, power and industrial systems, digital media systems, and international procurement. For more information about Hitachi Asia, please visit the website at http://www.hitachi.com.sg.

About Hitachi, Ltd.
Hitachi, Ltd. (TSE: 6501), headquartered in Tokyo, Japan, is a leading global electronics company with approximately 320,000 employees worldwide. Fiscal 2011 (ended March 31, 2012) consolidated revenues totaled 9,665 billion yen ($117.8 billion). Hitachi will focus more than ever on the Social Innovation Business, which includes information and telecommunication systems, power systems, environmental, industrial and transportation systems, and social and urban systems, as well as the sophisticated materials and key devices that support them. For more information on Hitachi, please visit the company's website at http://www.hitachi.com

About the Agency for Science, Technology and Research (A*STAR)
A*STAR is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovative-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centres, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

For more information about A*STAR, please visit www.a-star.edu.sg.

About the Data Storage Institute (DSI)
The Data Storage Institute (DSI) is a member of the Agency for Science, Technology and Research (A*STAR). Established in 1992 as the Magnetics Technology Centre (MTC), it was renamed Data Storage Institute in 1996. The research institute's vision is to be a vital node in a global community of knowledge generation and innovation, nurturing research talents and capabilities for world-class R&D in next generation storage technologies.

For more information about DSI, please visit www.dsi.a-star.edu.sg.

Melissa Loh | Research asia research news
Further information:
http://www.dsi.a-star.edu.sg
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>