Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitachi and Singapore’s A*STAR Design Novel Method to Reduce Genome Data Storage

31.05.2012
Hitachi and Data Storage Institute (DSI), a research institute of A*STAR are devising a data compression technique to tackle the increasing volume of genome sequencing data generated by the healthcare and biomedical industry.
Contacts:
Hitachi: Satoko Yasunaga
Corporate Communications
Dept., Hitachi Asia Ltd.
+65 6231 2410
ccd@has.hitachi.com.sg

Data Storage Institute(DSI): Melissa Loh
Assistant Manager
Corporate Communications
+65 6874 6852
lohsm@scei.a-star.edu.sg

Hitachi Asia Ltd. (Hitachi) and Data Storage Institute (DSI), a research institute of the Agency for Science, Technology and Research (A*STAR) are devising a data compression technique to tackle the increasing volume of genome sequencing data generated by the healthcare and biomedical industry. As the volume of such data has been forecasted to double annually, the collaborators aim to develop a more efficient data storage technology that will compress genome sequencing data more effectively than existing methods. This is an extension of an earlier partnership, where Hitachi and DSI researchers discovered the pattern of typical genome data transactions that would enable current storage systems to function optimally.

Genome sequencing is a data intensive process and high-powered machines are required to decipher the order of deoxyribonucleic acid (commonly known as DNA) nucleotide bases – Adenine (A), Cytosine (C), Guanine (G), and Thymine (T) that consist within a DNA molecule. A human genome of an individual contains over three billion of these genetic letters and occupies up to 725 MB of uncompressed data. The data multiplies when it is replicated, processed and shared globally among researchers for more experiments which can amount to terabytes of data. Scientists and medical practitioners rely on genome sequence to decode the string of letters and gain a clearer understanding of the human anatomy, how genes interact and affect the growth and development of an organism. This in turn helps identify the causes of common genetic disorders. For instance, sequencing the genes of tumour cells can aid doctors in their study of mutations and differentiate cancerous cells from normal tissues, enabling them to prescribe appropriate drugs that will treat the affected tumours more accurately.

With such tangible medical benefits compounded by the advancement of high throughput sequencers, the use of genetic analysing tool is becoming more widespread and is likely to lead to an overwhelming increase in the velocity, volume and variety of genome data being created. This trend poses significant challenges for data centres to provide high performance storage systems and fast retrieval of large genomic data files. The exponential growth of genome sequencing data will also place pressures on current data centres, slowing down performance levels and creating massive demands for larger hard disk space. Other factors that will drive cost up include the high energy consumption required to power the data centres and the operating cost of maintaining the infrastructure.

In a bid to address the current computational and scalability limitations, DSI researchers were commissioned to study how genome sequencing data is optimised by researchers from Genome Institute of Singapore (GIS), another A*STAR research institute. Research into the characteristics of genome data revealed that existing data compression methods are unlikely to manage current workloads due to inefficiencies and heavy demands for larger memory storage. Building on the collective insights from this earlier project collaboration, Hitachi and DSI are now working towards perfecting the shortfalls identified in current data storage models to design an innovative genome data compression method reduce data storage capacity needs, quicken decompression speeds and lower storage costs.

“By raising compression capacity, we can envision smaller genome sequencing facilities to handle petabytes of data in a year compared to current terabytes levels which are mostly restricted to large genome sequencing centres due to storage limitations. DSI will continue to play a pivotal role in enabling new storage technologies for the biomedical research and healthcare industry to accelerate research findings and discoveries,” said Dr Pantelis Alexopoulos, DSI’s Executive Director.

“We are delighted to continue our long-standing partnership with DSI in the research field of networked storage. As the industry leader in storage technology and bioinformatics software solutions, I am confident that the outcome of this collaboration will lead to more innovative solutions that could potentially be one of Hitachi’s future areas of business expansion,” said Mr Makoto Nagashima, Managing Director of Hitachi Asia Ltd.

About Hitachi Asia Ltd.
Hitachi Asia Ltd., a subsidiary of Hitachi, Ltd., established in Singapore in 1989, operates across six Asian countries (Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam). Business includes information systems, power and industrial systems, digital media systems, and international procurement. For more information about Hitachi Asia, please visit the website at http://www.hitachi.com.sg.

About Hitachi, Ltd.
Hitachi, Ltd. (TSE: 6501), headquartered in Tokyo, Japan, is a leading global electronics company with approximately 320,000 employees worldwide. Fiscal 2011 (ended March 31, 2012) consolidated revenues totaled 9,665 billion yen ($117.8 billion). Hitachi will focus more than ever on the Social Innovation Business, which includes information and telecommunication systems, power systems, environmental, industrial and transportation systems, and social and urban systems, as well as the sophisticated materials and key devices that support them. For more information on Hitachi, please visit the company's website at http://www.hitachi.com

About the Agency for Science, Technology and Research (A*STAR)
A*STAR is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovative-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centres, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

For more information about A*STAR, please visit www.a-star.edu.sg.

About the Data Storage Institute (DSI)
The Data Storage Institute (DSI) is a member of the Agency for Science, Technology and Research (A*STAR). Established in 1992 as the Magnetics Technology Centre (MTC), it was renamed Data Storage Institute in 1996. The research institute's vision is to be a vital node in a global community of knowledge generation and innovation, nurturing research talents and capabilities for world-class R&D in next generation storage technologies.

For more information about DSI, please visit www.dsi.a-star.edu.sg.

Melissa Loh | Research asia research news
Further information:
http://www.dsi.a-star.edu.sg
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>