Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitachi and Singapore’s A*STAR Design Novel Method to Reduce Genome Data Storage

31.05.2012
Hitachi and Data Storage Institute (DSI), a research institute of A*STAR are devising a data compression technique to tackle the increasing volume of genome sequencing data generated by the healthcare and biomedical industry.
Contacts:
Hitachi: Satoko Yasunaga
Corporate Communications
Dept., Hitachi Asia Ltd.
+65 6231 2410
ccd@has.hitachi.com.sg

Data Storage Institute(DSI): Melissa Loh
Assistant Manager
Corporate Communications
+65 6874 6852
lohsm@scei.a-star.edu.sg

Hitachi Asia Ltd. (Hitachi) and Data Storage Institute (DSI), a research institute of the Agency for Science, Technology and Research (A*STAR) are devising a data compression technique to tackle the increasing volume of genome sequencing data generated by the healthcare and biomedical industry. As the volume of such data has been forecasted to double annually, the collaborators aim to develop a more efficient data storage technology that will compress genome sequencing data more effectively than existing methods. This is an extension of an earlier partnership, where Hitachi and DSI researchers discovered the pattern of typical genome data transactions that would enable current storage systems to function optimally.

Genome sequencing is a data intensive process and high-powered machines are required to decipher the order of deoxyribonucleic acid (commonly known as DNA) nucleotide bases – Adenine (A), Cytosine (C), Guanine (G), and Thymine (T) that consist within a DNA molecule. A human genome of an individual contains over three billion of these genetic letters and occupies up to 725 MB of uncompressed data. The data multiplies when it is replicated, processed and shared globally among researchers for more experiments which can amount to terabytes of data. Scientists and medical practitioners rely on genome sequence to decode the string of letters and gain a clearer understanding of the human anatomy, how genes interact and affect the growth and development of an organism. This in turn helps identify the causes of common genetic disorders. For instance, sequencing the genes of tumour cells can aid doctors in their study of mutations and differentiate cancerous cells from normal tissues, enabling them to prescribe appropriate drugs that will treat the affected tumours more accurately.

With such tangible medical benefits compounded by the advancement of high throughput sequencers, the use of genetic analysing tool is becoming more widespread and is likely to lead to an overwhelming increase in the velocity, volume and variety of genome data being created. This trend poses significant challenges for data centres to provide high performance storage systems and fast retrieval of large genomic data files. The exponential growth of genome sequencing data will also place pressures on current data centres, slowing down performance levels and creating massive demands for larger hard disk space. Other factors that will drive cost up include the high energy consumption required to power the data centres and the operating cost of maintaining the infrastructure.

In a bid to address the current computational and scalability limitations, DSI researchers were commissioned to study how genome sequencing data is optimised by researchers from Genome Institute of Singapore (GIS), another A*STAR research institute. Research into the characteristics of genome data revealed that existing data compression methods are unlikely to manage current workloads due to inefficiencies and heavy demands for larger memory storage. Building on the collective insights from this earlier project collaboration, Hitachi and DSI are now working towards perfecting the shortfalls identified in current data storage models to design an innovative genome data compression method reduce data storage capacity needs, quicken decompression speeds and lower storage costs.

“By raising compression capacity, we can envision smaller genome sequencing facilities to handle petabytes of data in a year compared to current terabytes levels which are mostly restricted to large genome sequencing centres due to storage limitations. DSI will continue to play a pivotal role in enabling new storage technologies for the biomedical research and healthcare industry to accelerate research findings and discoveries,” said Dr Pantelis Alexopoulos, DSI’s Executive Director.

“We are delighted to continue our long-standing partnership with DSI in the research field of networked storage. As the industry leader in storage technology and bioinformatics software solutions, I am confident that the outcome of this collaboration will lead to more innovative solutions that could potentially be one of Hitachi’s future areas of business expansion,” said Mr Makoto Nagashima, Managing Director of Hitachi Asia Ltd.

About Hitachi Asia Ltd.
Hitachi Asia Ltd., a subsidiary of Hitachi, Ltd., established in Singapore in 1989, operates across six Asian countries (Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam). Business includes information systems, power and industrial systems, digital media systems, and international procurement. For more information about Hitachi Asia, please visit the website at http://www.hitachi.com.sg.

About Hitachi, Ltd.
Hitachi, Ltd. (TSE: 6501), headquartered in Tokyo, Japan, is a leading global electronics company with approximately 320,000 employees worldwide. Fiscal 2011 (ended March 31, 2012) consolidated revenues totaled 9,665 billion yen ($117.8 billion). Hitachi will focus more than ever on the Social Innovation Business, which includes information and telecommunication systems, power systems, environmental, industrial and transportation systems, and social and urban systems, as well as the sophisticated materials and key devices that support them. For more information on Hitachi, please visit the company's website at http://www.hitachi.com

About the Agency for Science, Technology and Research (A*STAR)
A*STAR is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovative-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centres, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

For more information about A*STAR, please visit www.a-star.edu.sg.

About the Data Storage Institute (DSI)
The Data Storage Institute (DSI) is a member of the Agency for Science, Technology and Research (A*STAR). Established in 1992 as the Magnetics Technology Centre (MTC), it was renamed Data Storage Institute in 1996. The research institute's vision is to be a vital node in a global community of knowledge generation and innovation, nurturing research talents and capabilities for world-class R&D in next generation storage technologies.

For more information about DSI, please visit www.dsi.a-star.edu.sg.

Melissa Loh | Research asia research news
Further information:
http://www.dsi.a-star.edu.sg
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>