Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hipster, surfer or biker? Computers may soon be able to tell the difference

11.12.2013
Researchers develop algorithm that uses computer vision to identify social groups

Are you a hipster, surfer or biker? What is your urban tribe? Your computer may soon be able to tell. Computer scientists at the University of California, San Diego, are developing an algorithm that uses group pictures to determine to which of these groups, or urban tribes, you belong. So far, the algorithm is 48 percent accurate on average. That’s better than chance--which gets answers right only nine percent of the time--but researchers would like the algorithm perform at least as well as humans would.

An algorithm able to identify people’s urban tribes would have a wide range of applications, from generating more relevant search results and ads, to allowing social networks to provide better recommendations and content. There also is a growing interest in analyzing footage from cameras installed in public spaces to identify groups rather than individuals.

Computer scientists presented their findings at the British Machine Vision Conference in the United Kingdom this fall.

“This is a first step,” said Serge Belongie, a computer science professor at the Jacobs School of Engineering at the University of California, San Diego, and co-author of the study. “We are scratching the surface to figure out what the signals are.”

This is an extremely difficult problem, Belongie explained, and a 48 percent accuracy rate is actually a very good result. One of the researchers’ insights was to look at group pictures rather than pictures of individuals. They hoped that this would make it easier to pick up social cues, such as clothing and hairdos, to determine people’s tribes based on visuals featuring more than one person.

While humans can recognize urban tribes at a glance, computers cannot. So the algorithm segments each person in six sections—face, head, top of the head (where a hat would be), neck, torso and arms. This method is an example of what’s better known as a “parts and attributes” approach. Computer scientists designed the algorithm to analyze the picture as the sum of its parts and attributes—in this case haircuts, hair color, make up, jewelry and tattoos, for example. The algorithm also analyzes the boxes for color, texture and other factors.

Researchers then let data do the work, feeding the algorithm pictures labeled for the urban tribes they represent—hipsters, surfers, bikers, Goth, etc.—a common machine learning technique. Finally, they fed the algorithm pictures without labels. The computer vision program accurately determined to which urban tribe the pictures belonged 48 percent of the time—better than random. The researcher’s next step is to run the same set of pictures by human users and see how they perform.

In addition, the UC San Diego researchers are working with Lubomir Bourdev, a fomer Ph.D. computer science student at UC Berkeley, and Peter Belhumeur from the Department of Computer Science at Columbia University to improve the analysis of facial features and other attributes within the system.

To define urban tribes in the study, computer scientists turned to Wikipedia and selected the eight most popular categories in the encyclopedia’s list of subcultures: biker, country, Goth, heavy metal, hip hop, hipster, raver and surfer. They also included photographs from three common categories for social venues: formal events, dance clubs and casual pubs.

A by-product of their research was the development of an extensive dataset of urban tribe pictures, including hundreds of images, which they plan to make available to other research groups.

In addition to Belongie and Belhumeur, other co-authors on the paper are Ph.D. student Iljung Sam Kwak and Professor David Kriegman, both in the Department of Computer Science and Engineering at UC San Diego, and Ana C. Murillo, from the University of Zaragoza in Spain and currently a visiting scholar at UC San Diego.

Media Contacts
Ioana Patringenaru
Jacobs School of Engineering
Phone: 858-822-0899
ipatrin@ucsd.edu

Ioana Patringenaru | EurekAlert!
Further information:
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=1453

Further reports about: Computer Vision Ferchau Engineering Hipster algorithm computer science

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>