Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hipster, surfer or biker? Computers may soon be able to tell the difference

11.12.2013
Researchers develop algorithm that uses computer vision to identify social groups

Are you a hipster, surfer or biker? What is your urban tribe? Your computer may soon be able to tell. Computer scientists at the University of California, San Diego, are developing an algorithm that uses group pictures to determine to which of these groups, or urban tribes, you belong. So far, the algorithm is 48 percent accurate on average. That’s better than chance--which gets answers right only nine percent of the time--but researchers would like the algorithm perform at least as well as humans would.

An algorithm able to identify people’s urban tribes would have a wide range of applications, from generating more relevant search results and ads, to allowing social networks to provide better recommendations and content. There also is a growing interest in analyzing footage from cameras installed in public spaces to identify groups rather than individuals.

Computer scientists presented their findings at the British Machine Vision Conference in the United Kingdom this fall.

“This is a first step,” said Serge Belongie, a computer science professor at the Jacobs School of Engineering at the University of California, San Diego, and co-author of the study. “We are scratching the surface to figure out what the signals are.”

This is an extremely difficult problem, Belongie explained, and a 48 percent accuracy rate is actually a very good result. One of the researchers’ insights was to look at group pictures rather than pictures of individuals. They hoped that this would make it easier to pick up social cues, such as clothing and hairdos, to determine people’s tribes based on visuals featuring more than one person.

While humans can recognize urban tribes at a glance, computers cannot. So the algorithm segments each person in six sections—face, head, top of the head (where a hat would be), neck, torso and arms. This method is an example of what’s better known as a “parts and attributes” approach. Computer scientists designed the algorithm to analyze the picture as the sum of its parts and attributes—in this case haircuts, hair color, make up, jewelry and tattoos, for example. The algorithm also analyzes the boxes for color, texture and other factors.

Researchers then let data do the work, feeding the algorithm pictures labeled for the urban tribes they represent—hipsters, surfers, bikers, Goth, etc.—a common machine learning technique. Finally, they fed the algorithm pictures without labels. The computer vision program accurately determined to which urban tribe the pictures belonged 48 percent of the time—better than random. The researcher’s next step is to run the same set of pictures by human users and see how they perform.

In addition, the UC San Diego researchers are working with Lubomir Bourdev, a fomer Ph.D. computer science student at UC Berkeley, and Peter Belhumeur from the Department of Computer Science at Columbia University to improve the analysis of facial features and other attributes within the system.

To define urban tribes in the study, computer scientists turned to Wikipedia and selected the eight most popular categories in the encyclopedia’s list of subcultures: biker, country, Goth, heavy metal, hip hop, hipster, raver and surfer. They also included photographs from three common categories for social venues: formal events, dance clubs and casual pubs.

A by-product of their research was the development of an extensive dataset of urban tribe pictures, including hundreds of images, which they plan to make available to other research groups.

In addition to Belongie and Belhumeur, other co-authors on the paper are Ph.D. student Iljung Sam Kwak and Professor David Kriegman, both in the Department of Computer Science and Engineering at UC San Diego, and Ana C. Murillo, from the University of Zaragoza in Spain and currently a visiting scholar at UC San Diego.

Media Contacts
Ioana Patringenaru
Jacobs School of Engineering
Phone: 858-822-0899
ipatrin@ucsd.edu

Ioana Patringenaru | EurekAlert!
Further information:
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=1453

Further reports about: Computer Vision Ferchau Engineering Hipster algorithm computer science

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>