Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly automated live cell imaging speeds up the search for new drugs

08.09.2014

Fraunhofer FIT will present the latest version of its Zeta Fluorescence Image Analysis software at MipTec, held in Basel, Switzerland, from September 23 to 25, 2014. Zeta, now extended to a software platform, supports the complete work process of finding new pharmaceutical agents. At MipTec, Fraunhofer FIT will demo advanced Zeta applications in cancer research and tissue analysis.

The new Zeta software platform allows researchers to implement specific imaging workflows for a broad range of applications in drug research very easily. The software was developed specifically for high content analysis of live cell imaging data that monitor and record the complete life cycle of cells.


Zeta's clean graphical user interface.

(c) Fraunhofer FIT

The particular challenge for image analysis here is to detect the different phases of cell modification and cell division, and to record their temporal relationship. On this basis, a special visualization tool makes it easy to explore the data, to find individual differences and to determine the causes for different reactions of the cells.

“Using Zeta, researchers can analyze complex processes in the division of cells very easily and intuitively. A simple user interface guides them through the entire analysis workflow. And due to the evolution of Zeta into a modular software platform, we can now implement new applications much faster and thus at lower cost for our clients”, Dr. Andreas Pippow, Fraunhofer Institute for Applied Information Technology FIT, points out the main advantages of the latest Zeta version.

New software interfaces in the new version make it easier to integrate Zeta into all-encompassing high content analysis workflows. Imaging software often exists only as an isolated application – which was true also for earlier Zeta versions. What users need, however, is full integration with image data management and statistical analyses. Only if all steps in the entire workflow are supported by one coherent system, the users can freely explore and exploit their data. The latest Zeta version is a significant step in this direction.

At MipTec, September 23 to 25, 2014, the Zeta developers from Fraunhofer FIT demo a Zeta application that determines the cell division rate in cell assays. It is currently being used in cancer research in a large German pharmaceutical company.

The FIT researchers also demo a Zeta application in the study of physiological functions in tissue samples. While both applications are used in the quest for new pharmaceutical agents, they apply completely different image analysis methods. In the first application, fluorescent markers identify the cells; in the second, the objects must be detected without any specific marking.

Contact:
Alex Deeg
pr@fit.fraunhofer.de
Phone +49 2241 14-2208

Alex Deeg | Fraunhofer-Institut
Further information:
http://www.fit.fraunhofer.de

Further reports about: FIT Zeta analyses analyze differences drugs identify individual markers methods special steps temporal

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>