Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-speed CMOS sensors provide better images

Conventional CMOS image sensors are not suitable for low-light applications such as fluorescence, since large pixels arranged in a matrix do not support high readout speeds. A new optoelectronic component speeds up this process. It has already been patented.

CMOS image sensors have long since been the solution of choice for digital photography. They are much cheaper to produce than existing sensors, and they are also superior in terms of power consumption and handling. Consequently, leading manufacturers of cell-phone and digital cameras fit CMOS chips in their products almost without exception. This not only reduces the demands made of the battery, it also makes increasingly smaller cameras possible.

Yet these optical semiconductor chips are now reaching their limits: while miniaturization in consumer electronics is leading to increasingly smaller pixels around 1 micrometer across, certain applications require larger pixels in excess of 10 micrometers. Particularly in areas where only minimal light is available, such as in X-ray photography or in astronomy, having a larger pixel area compensates for the lack of light. Pinned photodiodes (PPD) are used to convert the light signals into electrical pulses. These optoelectric components are crucial for image processing and are built into the CMOS chips. “Yet when the pixels exceed a certain size, the PPDs have a speed problem”, explains Werner Brockherde, head of department at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS. Low-light applications tend to call for high image rates. “But the readout speed using PPD is too low”, says Brockherde.

The Fraunhofer researchers have now come up with a solution to this problem – it is unique and has already been patented. The scientists have developed a new optoelectronic component, the lateral drift field photodetector (LDPD). “In this component, the charge carriers generated by the incident light move at high speed to the readout node,” explains the researcher. With the PPD the electrons simply diffuse to the exit; a comparatively slow process but which is sufficient for many applications. “But by integrating an internal electric field into the photoactive region of the component, we have managed to accelerate this process by a factor of up to a hundred.”

To produce the new component, the Fraunhofer researchers improved upon the currently available CMOS chip manufacturing process based on the 0.35 µm standard: “The additional LDPD component must not be allowed to impair the properties of the other components,” says Brockherde. Using simulation calculations the experts managed to meet these requirements – and a prototype of the new high-speed CMOS image sensors is already available. “We expect to get approval for series production next year,” says Brockherde.

The high-speed CMOS sensors are ideal candidates for applications that require large pixels and a high readout speed: astronomy, spectroscopy or state-of-the-art X-ray photography are among the potential applications. But the sensors are also ideally suited for use as 3-D sensors based on the time-of-flight process, whereby light sources emit short pulses that are reflected by the objects. The time-of-flight of the reflected light is then recorded by a sensor and used to create a fully-fledged 3-D image. This technology is a compelling proposition for applications such as crash protection, as the sensors can precisely record their environment in three dimensions. The Fraunhofer researchers have already developed this kind of area sensor based on the unique pixel configuration for TriDiCam GmbH.

Werner Brockherde | Fraunhofer Research News
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>