Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-speed CMOS sensors provide better images

10.01.2012
Conventional CMOS image sensors are not suitable for low-light applications such as fluorescence, since large pixels arranged in a matrix do not support high readout speeds. A new optoelectronic component speeds up this process. It has already been patented.

CMOS image sensors have long since been the solution of choice for digital photography. They are much cheaper to produce than existing sensors, and they are also superior in terms of power consumption and handling. Consequently, leading manufacturers of cell-phone and digital cameras fit CMOS chips in their products almost without exception. This not only reduces the demands made of the battery, it also makes increasingly smaller cameras possible.

Yet these optical semiconductor chips are now reaching their limits: while miniaturization in consumer electronics is leading to increasingly smaller pixels around 1 micrometer across, certain applications require larger pixels in excess of 10 micrometers. Particularly in areas where only minimal light is available, such as in X-ray photography or in astronomy, having a larger pixel area compensates for the lack of light. Pinned photodiodes (PPD) are used to convert the light signals into electrical pulses. These optoelectric components are crucial for image processing and are built into the CMOS chips. “Yet when the pixels exceed a certain size, the PPDs have a speed problem”, explains Werner Brockherde, head of department at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS. Low-light applications tend to call for high image rates. “But the readout speed using PPD is too low”, says Brockherde.

The Fraunhofer researchers have now come up with a solution to this problem – it is unique and has already been patented. The scientists have developed a new optoelectronic component, the lateral drift field photodetector (LDPD). “In this component, the charge carriers generated by the incident light move at high speed to the readout node,” explains the researcher. With the PPD the electrons simply diffuse to the exit; a comparatively slow process but which is sufficient for many applications. “But by integrating an internal electric field into the photoactive region of the component, we have managed to accelerate this process by a factor of up to a hundred.”

To produce the new component, the Fraunhofer researchers improved upon the currently available CMOS chip manufacturing process based on the 0.35 µm standard: “The additional LDPD component must not be allowed to impair the properties of the other components,” says Brockherde. Using simulation calculations the experts managed to meet these requirements – and a prototype of the new high-speed CMOS image sensors is already available. “We expect to get approval for series production next year,” says Brockherde.

The high-speed CMOS sensors are ideal candidates for applications that require large pixels and a high readout speed: astronomy, spectroscopy or state-of-the-art X-ray photography are among the potential applications. But the sensors are also ideally suited for use as 3-D sensors based on the time-of-flight process, whereby light sources emit short pulses that are reflected by the objects. The time-of-flight of the reflected light is then recorded by a sensor and used to create a fully-fledged 3-D image. This technology is a compelling proposition for applications such as crash protection, as the sensors can precisely record their environment in three dimensions. The Fraunhofer researchers have already developed this kind of area sensor based on the unique pixel configuration for TriDiCam GmbH.

Werner Brockherde | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/cmos-sensors.html

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>