Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Health e-Grids

14.04.2010
Cancer, heart and circulatory system diseases cause two thirds of all deaths in Europe. Three research projects at this week’s Enabling Grids for E-sciencE (EGEE) User Forum in Uppsala, Sweden, are demonstrating ways that modern computing techniques can investigate today’s biggest killers.

As it becomes increasingly sophisticated, the field of medicine is grappling with unprecedented data demands. EGEE, providers of the world's largest multi-disciplinary computing grid, help scientists from all fields manage their work quickly and efficiently, with medical researchers and doctors increasingly joining their ranks.

Grid computing can connect doctors and researchers to both computing power and remote databases of medical information. It has the added benefit of an inbuilt secured system preventing unauthorised access to any sensitive patient information.

The HeMoLab project is interested in the heart as well as the system that it is connected to. They are working on developing models, techniques and tools for simulating the entire cardiovascular system. The first accurate description of how the heart pumps blood around the body was published by Arabic physician Ibn al-Nafis in 1242. Since then our knowledge of the way our heart works has expanded to fill volumes. The main motivation for this project is the deeper understanding about the complex physiological interactions in the human body and their role in the onset and progress of several cardiovascular diseases. Moreover, with this study it is also possible to provide relevant information so as to use it as complementary data for medical training, diagnosis and eventually surgical planning.

The simulation of a single heart beat can take up to 20 days in a single computer depending on the degree of approximation considered for problem. Using the grid computing infrastructure offered by the EELA-2 project it is now possible to perform the execution of multiple simulations at the same time. Paulo Ziemer from the HeMoLab team worked on getting the application up and running on the grid. “Porting the application was a great experience, that certainly helped us a lot to understand how grid computing could help the simulation of models that demand high computing power. Further tests need to be made yet, but I think the first step was accomplished successfully.”

In Europe cancer is responsible for 1 in 4 deaths and is the single greatest killer of people aged 45-64[1]. Again early diagnosis is the best way of helping people with the disease. However doctors frequently face problems in accessing the abundance of data that is constantly generated by labs, hospitals, doctors and health authorities.

Another project, Sentinel, centred in France, brings together many areas of cancer research: screening structures, medical laboratories and both regional and national public health authorities. It aims to enable secured medical data exchanges between cancer screening organisations and cancer analysis laboratories. Grid technology – which easily connects data sources and provides a secure framework – is particularly well suited for this situation, where patient data must only be available to authenticated and authorised users.

Starting in 2009, Sentinel’s first objective was to offer access to electronic pathology reports for cancer screening. Since then, Sentinel has been expanded to allow the French national health organisation access to the medical data in order to produce statistics on cancer within the Auvergne region. Recently the team has added a module to allow health professionals to use their smartcards to gain access to the data and are hoping to expand the system nationwide.

Improving the speed of diagnosis and finding areas to focus on in order to treat an illness is essential in tackling cancer and heart disease. All of these projects demonstrate where medical research is going in their use of computers. EGEE has worked for the last 6 years to provide the tools to create a platform for the medical profession and Sentinel, HeMoLab and Gwendia have proven not only its usefulness but also its flexibility.

Catherine Gater | CERN
Further information:
http://www.egee-eu.org
http://www.epha.org/a/2352

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>