Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How hard is it to 'de-anonymize' cellphone data?

28.03.2013
A new formula that characterizes the privacy afforded by large, aggregate data sets may be discouraging, but could help sharpen policy discussion.

The proliferation of sensor-studded cellphones could lead to a wealth of data with socially useful applications — in urban planning, epidemiology, operations research and emergency preparedness, among other things.


Rendering by Christine Daniloff/MIT of an original image by Yves-Alexandre de Montjoye et al.

Of course, before being released to researchers, the data would have to be stripped of identifying information. But how hard could it be to protect the identity of one unnamed cellphone user in a data set of hundreds of thousands or even millions?

According to a paper appearing this week in Scientific Reports, harder than you might think. Researchers at MIT and the Université Catholique de Louvain, in Belgium, analyzed data on 1.5 million cellphone users in a small European country over a span of 15 months and found that just four points of reference, with fairly low spatial and temporal resolution, was enough to uniquely identify 95 percent of them.

In other words, to extract the complete location information for a single person from an “anonymized” data set of more than a million people, all you would need to do is place him or her within a couple of hundred yards of a cellphone transmitter, sometime over the course of an hour, four times in one year. A few Twitter posts would probably provide all the information you needed, if they contained specific information about the person’s whereabouts.

The first author on the paper is Yves-Alexandre de Montjoye, a graduate student in the research group of Toshiba Professor of Media Arts and Science Sandy Pentland. He’s joined by César Hidalgo, an assistant professor of media arts and science; Vincent Blondel, a visiting professor at MIT and a professor of applied mathematics at Université Catholique; and Michel Verleysen, a professor of electrical engineering at Université Catholique.

Focusing the debate

Hidalgo’s group specializes in applying the tools of statistical physics to a wide range of subjects, from communications networks to genetics to economics. In this case, he and de Montjoye were able to use those tools to uncover a simple mathematical relationship between the resolution of spatiotemporal data and the likelihood of identifying a member of a data set.

According to their formula, the probability of identifying someone goes down if the resolution of the measurements decreases, but less than you might think. Reporting the time of each measurement as imprecisely as sometime within a 15-hour span, or location as imprecisely as somewhere amid 15 adjacent cell towers, would still enable the unique identification of half the people in the sample data set.

But while its initial application may be discouraging, de Montjoye and Hidalgo hope that their formula will provide a way for researchers and policy analysts to reason more rigorously about the privacy safeguards that need to be put in place when they’re working with aggregated location data.

“Both César and I deeply believe that we all have a lot to gain from this data being used,” de Montjoye says. “This formula is something that could be useful to help the debate and decide, OK, how do we balance things out, and how do we make it a fair deal for everyone to use this data?”

Everybody’s different

In the data set that the researchers analyzed, the location of a cellphone was inferred solely from that of the cell tower it was connected to, and the time of the connection was given as falling within a one-hour interval. Each cellphone had a unique, randomly generated identifying number, so that its movement could be traced over time. But there was no information connecting that number to the phone’s owner.

The researchers randomly selected a representative sampling from the set of 1.5 million cellphone traces and, for each trace, began choosing points at random. For 95 percent of the traces, just four randomly selected points was enough to distinguish them from all other traces in the database. In the worst (or, from another perspective, best) case, 11 measurements were necessary.

“There’s a concern with this data, to what extent can we preserve anonymity,” says Luis Bettencourt, a professor at the Santa Fe Institute who studies social systems. “What they are showing here, quite clearly, is that it’s very hard to preserve anonymity.”

But for Bettencourt, the uniqueness of people’s trajectories through cities is itself precisely the type of information that analysis of cellphone data is meant to uncover. “This is interesting, from a scientific point of view, to understand how people use urban space,” Bettencourt says. “It shows what kind of social systems cities are.”

The researchers suspect that similar relationships might hold for other types of data. “I would not be surprised if a similar result — maybe requiring more points — would, for example, extend to web browsing,” Hidalgo says. “The space of potential combinations is really large. When a person is, in some sense, being expressed in a space in which the total number of combinations is huge, the probability that two people would have the same exact trajectory — whether it’s walking or browsing — is almost nil.”

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>