Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How hard is it to 'de-anonymize' cellphone data?

28.03.2013
A new formula that characterizes the privacy afforded by large, aggregate data sets may be discouraging, but could help sharpen policy discussion.

The proliferation of sensor-studded cellphones could lead to a wealth of data with socially useful applications — in urban planning, epidemiology, operations research and emergency preparedness, among other things.


Rendering by Christine Daniloff/MIT of an original image by Yves-Alexandre de Montjoye et al.

Of course, before being released to researchers, the data would have to be stripped of identifying information. But how hard could it be to protect the identity of one unnamed cellphone user in a data set of hundreds of thousands or even millions?

According to a paper appearing this week in Scientific Reports, harder than you might think. Researchers at MIT and the Université Catholique de Louvain, in Belgium, analyzed data on 1.5 million cellphone users in a small European country over a span of 15 months and found that just four points of reference, with fairly low spatial and temporal resolution, was enough to uniquely identify 95 percent of them.

In other words, to extract the complete location information for a single person from an “anonymized” data set of more than a million people, all you would need to do is place him or her within a couple of hundred yards of a cellphone transmitter, sometime over the course of an hour, four times in one year. A few Twitter posts would probably provide all the information you needed, if they contained specific information about the person’s whereabouts.

The first author on the paper is Yves-Alexandre de Montjoye, a graduate student in the research group of Toshiba Professor of Media Arts and Science Sandy Pentland. He’s joined by César Hidalgo, an assistant professor of media arts and science; Vincent Blondel, a visiting professor at MIT and a professor of applied mathematics at Université Catholique; and Michel Verleysen, a professor of electrical engineering at Université Catholique.

Focusing the debate

Hidalgo’s group specializes in applying the tools of statistical physics to a wide range of subjects, from communications networks to genetics to economics. In this case, he and de Montjoye were able to use those tools to uncover a simple mathematical relationship between the resolution of spatiotemporal data and the likelihood of identifying a member of a data set.

According to their formula, the probability of identifying someone goes down if the resolution of the measurements decreases, but less than you might think. Reporting the time of each measurement as imprecisely as sometime within a 15-hour span, or location as imprecisely as somewhere amid 15 adjacent cell towers, would still enable the unique identification of half the people in the sample data set.

But while its initial application may be discouraging, de Montjoye and Hidalgo hope that their formula will provide a way for researchers and policy analysts to reason more rigorously about the privacy safeguards that need to be put in place when they’re working with aggregated location data.

“Both César and I deeply believe that we all have a lot to gain from this data being used,” de Montjoye says. “This formula is something that could be useful to help the debate and decide, OK, how do we balance things out, and how do we make it a fair deal for everyone to use this data?”

Everybody’s different

In the data set that the researchers analyzed, the location of a cellphone was inferred solely from that of the cell tower it was connected to, and the time of the connection was given as falling within a one-hour interval. Each cellphone had a unique, randomly generated identifying number, so that its movement could be traced over time. But there was no information connecting that number to the phone’s owner.

The researchers randomly selected a representative sampling from the set of 1.5 million cellphone traces and, for each trace, began choosing points at random. For 95 percent of the traces, just four randomly selected points was enough to distinguish them from all other traces in the database. In the worst (or, from another perspective, best) case, 11 measurements were necessary.

“There’s a concern with this data, to what extent can we preserve anonymity,” says Luis Bettencourt, a professor at the Santa Fe Institute who studies social systems. “What they are showing here, quite clearly, is that it’s very hard to preserve anonymity.”

But for Bettencourt, the uniqueness of people’s trajectories through cities is itself precisely the type of information that analysis of cellphone data is meant to uncover. “This is interesting, from a scientific point of view, to understand how people use urban space,” Bettencourt says. “It shows what kind of social systems cities are.”

The researchers suspect that similar relationships might hold for other types of data. “I would not be surprised if a similar result — maybe requiring more points — would, for example, extend to web browsing,” Hidalgo says. “The space of potential combinations is really large. When a person is, in some sense, being expressed in a space in which the total number of combinations is huge, the probability that two people would have the same exact trajectory — whether it’s walking or browsing — is almost nil.”

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>