Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Handwritten Captchas to "Smart Rooms," Tech Solutions Start With Pattern Recognition

15.10.2010
Buy something online, enter your credit card number and mailing address. Simple. Then you come to the box with the CAPTCHA, the Completely Automated Public Turing Test to Tell Computers and Humans Apart. Here, the website attempts to confirm that you're a human, not some robot about to commit a cybercrime. You dutifully copy down the warped, watery-looking letters.

Incorrect. Another captcha appears. You try again. Also incorrect. A third captcha appears. You start rethinking your purchase.

University at Buffalo computer scientist Venu Govindaraju, who, along with his UB colleagues, pioneered machine recognition of human handwriting, believes that this annoying 21st-century problem has a decidedly old-fashioned solution: handwriting.

"Here at UB's Center for Unified Biometrics, we're the only ones who have proposed and thoroughly studied handwritten captchas," says Govindaraju. "Our perspective is that humans are good at reading handwriting, machines are not. It comes naturally to humans. But computer scientists typically consider handwriting a hopeless case, until someone comes along and shows them that it isn't."

Govindaraju should know. Research he and his UB colleagues conducted in the 1990s helped the U.S. Postal Service establish the first machines that could read handwritten addresses, a feat that many at the time -- especially in industry -- said simply could not be done. In 1996, after years of research, the UB research enabled the USPS to be able to start machine-reading of handwritten addresses, boosting efficiency and saving the agency millions of dollars each year.

Govindaraju believes a similar success can occur with captchas. One of his doctoral students at UB has graduated and was hired by Yahoo! on the basis of his work developing "simulated" handwritten captchas.

"We developed an archive that can automatically generate as many different styles of handwriting as we want," says Govindaraju.

The research is based on pattern recognition, a subfield of machine learning in computer science that is concerned with developing systems based on detecting patterns in data.

Similar issues are being studied by Govindaraju and his UB colleagues in order to develop "smart room" technologies, supported by an HP Labs Innovation Research award.

"Smart rooms" are indoor environments equipped with sensitive, but unobtrusive devices, such as cameras and microphones that can identify and track the movements and gestures of inhabitants for a broad range of applications, from providing supplemental supervision in assisted living facilities for the elderly or disabled, to monitoring office workplaces and retail establishments for security. Eventually, the goal is to extend "smart room" features to larger arenas, such as shopping centers, airports and other transportation centers.

Biometrics that CUBS researchers are studying for "smart room" applications include hand gestures as well as the more common biometrics of facial, voice and gait recognition.

"This, too, is all pattern recognition," Govindaraju says, "but instead of letters, here, we're trying to standardize gestures.

"It's like developing an alphabet of gestures so machines can be programmed to do gesture recognition. The idea is to control objects on a monitor without technology," he says.

Since its founding in 2003, CUBS has attracted approximately $10 million in federal and industry funding and has produced 17 doctoral-level graduates. The center advances machine learning and pattern recognition technologies to build engineered systems for both civilian and homeland security applications. It develops new methods for customizing devices that use data from physical biometrics, such as fingerprints, hand geometry and iris scans; behavioral biometrics, such as signature, voiceprint and gait; and chemical biometrics, such as DNA and body odor.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu
http://www.buffalo.edu/news/11864

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>