Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Handwritten Captchas to "Smart Rooms," Tech Solutions Start With Pattern Recognition

15.10.2010
Buy something online, enter your credit card number and mailing address. Simple. Then you come to the box with the CAPTCHA, the Completely Automated Public Turing Test to Tell Computers and Humans Apart. Here, the website attempts to confirm that you're a human, not some robot about to commit a cybercrime. You dutifully copy down the warped, watery-looking letters.

Incorrect. Another captcha appears. You try again. Also incorrect. A third captcha appears. You start rethinking your purchase.

University at Buffalo computer scientist Venu Govindaraju, who, along with his UB colleagues, pioneered machine recognition of human handwriting, believes that this annoying 21st-century problem has a decidedly old-fashioned solution: handwriting.

"Here at UB's Center for Unified Biometrics, we're the only ones who have proposed and thoroughly studied handwritten captchas," says Govindaraju. "Our perspective is that humans are good at reading handwriting, machines are not. It comes naturally to humans. But computer scientists typically consider handwriting a hopeless case, until someone comes along and shows them that it isn't."

Govindaraju should know. Research he and his UB colleagues conducted in the 1990s helped the U.S. Postal Service establish the first machines that could read handwritten addresses, a feat that many at the time -- especially in industry -- said simply could not be done. In 1996, after years of research, the UB research enabled the USPS to be able to start machine-reading of handwritten addresses, boosting efficiency and saving the agency millions of dollars each year.

Govindaraju believes a similar success can occur with captchas. One of his doctoral students at UB has graduated and was hired by Yahoo! on the basis of his work developing "simulated" handwritten captchas.

"We developed an archive that can automatically generate as many different styles of handwriting as we want," says Govindaraju.

The research is based on pattern recognition, a subfield of machine learning in computer science that is concerned with developing systems based on detecting patterns in data.

Similar issues are being studied by Govindaraju and his UB colleagues in order to develop "smart room" technologies, supported by an HP Labs Innovation Research award.

"Smart rooms" are indoor environments equipped with sensitive, but unobtrusive devices, such as cameras and microphones that can identify and track the movements and gestures of inhabitants for a broad range of applications, from providing supplemental supervision in assisted living facilities for the elderly or disabled, to monitoring office workplaces and retail establishments for security. Eventually, the goal is to extend "smart room" features to larger arenas, such as shopping centers, airports and other transportation centers.

Biometrics that CUBS researchers are studying for "smart room" applications include hand gestures as well as the more common biometrics of facial, voice and gait recognition.

"This, too, is all pattern recognition," Govindaraju says, "but instead of letters, here, we're trying to standardize gestures.

"It's like developing an alphabet of gestures so machines can be programmed to do gesture recognition. The idea is to control objects on a monitor without technology," he says.

Since its founding in 2003, CUBS has attracted approximately $10 million in federal and industry funding and has produced 17 doctoral-level graduates. The center advances machine learning and pattern recognition technologies to build engineered systems for both civilian and homeland security applications. It develops new methods for customizing devices that use data from physical biometrics, such as fingerprints, hand geometry and iris scans; behavioral biometrics, such as signature, voiceprint and gait; and chemical biometrics, such as DNA and body odor.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu
http://www.buffalo.edu/news/11864

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>