Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From Handwritten Captchas to "Smart Rooms," Tech Solutions Start With Pattern Recognition

Buy something online, enter your credit card number and mailing address. Simple. Then you come to the box with the CAPTCHA, the Completely Automated Public Turing Test to Tell Computers and Humans Apart. Here, the website attempts to confirm that you're a human, not some robot about to commit a cybercrime. You dutifully copy down the warped, watery-looking letters.

Incorrect. Another captcha appears. You try again. Also incorrect. A third captcha appears. You start rethinking your purchase.

University at Buffalo computer scientist Venu Govindaraju, who, along with his UB colleagues, pioneered machine recognition of human handwriting, believes that this annoying 21st-century problem has a decidedly old-fashioned solution: handwriting.

"Here at UB's Center for Unified Biometrics, we're the only ones who have proposed and thoroughly studied handwritten captchas," says Govindaraju. "Our perspective is that humans are good at reading handwriting, machines are not. It comes naturally to humans. But computer scientists typically consider handwriting a hopeless case, until someone comes along and shows them that it isn't."

Govindaraju should know. Research he and his UB colleagues conducted in the 1990s helped the U.S. Postal Service establish the first machines that could read handwritten addresses, a feat that many at the time -- especially in industry -- said simply could not be done. In 1996, after years of research, the UB research enabled the USPS to be able to start machine-reading of handwritten addresses, boosting efficiency and saving the agency millions of dollars each year.

Govindaraju believes a similar success can occur with captchas. One of his doctoral students at UB has graduated and was hired by Yahoo! on the basis of his work developing "simulated" handwritten captchas.

"We developed an archive that can automatically generate as many different styles of handwriting as we want," says Govindaraju.

The research is based on pattern recognition, a subfield of machine learning in computer science that is concerned with developing systems based on detecting patterns in data.

Similar issues are being studied by Govindaraju and his UB colleagues in order to develop "smart room" technologies, supported by an HP Labs Innovation Research award.

"Smart rooms" are indoor environments equipped with sensitive, but unobtrusive devices, such as cameras and microphones that can identify and track the movements and gestures of inhabitants for a broad range of applications, from providing supplemental supervision in assisted living facilities for the elderly or disabled, to monitoring office workplaces and retail establishments for security. Eventually, the goal is to extend "smart room" features to larger arenas, such as shopping centers, airports and other transportation centers.

Biometrics that CUBS researchers are studying for "smart room" applications include hand gestures as well as the more common biometrics of facial, voice and gait recognition.

"This, too, is all pattern recognition," Govindaraju says, "but instead of letters, here, we're trying to standardize gestures.

"It's like developing an alphabet of gestures so machines can be programmed to do gesture recognition. The idea is to control objects on a monitor without technology," he says.

Since its founding in 2003, CUBS has attracted approximately $10 million in federal and industry funding and has produced 17 doctoral-level graduates. The center advances machine learning and pattern recognition technologies to build engineered systems for both civilian and homeland security applications. It develops new methods for customizing devices that use data from physical biometrics, such as fingerprints, hand geometry and iris scans; behavioral biometrics, such as signature, voiceprint and gait; and chemical biometrics, such as DNA and body odor.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>