Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Handheld Touch Screen Device May Lead to Mobile Fingerprint ID

The Federal Bureau of Investigation (FBI) Hostage Rescue Team had a problem—they needed a small, portable tool to identify fingerprints and faces, but couldn’t get anyone interested in building a solution for such a limited market.

So they came to the National Institute of Standards and Technology (NIST). The FBI told NIST they wanted something more portable than the 20-pound rugged laptop plus fingerprint scanner their hostage rescue teams lug around to aid in their anti-terrorism efforts, and this led to NIST developing a new application for a handheld touch-screen device.

The original task given to NIST by the FBI was simply to design and compile the requirements for the software the FBI needed to run on their platform of choice: a handheld device with a touch screen about the size of an index card. Paring down the visual interface to a mini-screen requires detailed understanding of what functionalities are most important. NIST researchers Mary Theofanos, Brian Stanton, Yee-Yin Choong and Ross Micheals brainstormed with the FBI team about what they required and, more importantly, watched them doing their work since most people can demonstrate what they need far better than they can articulate it.

The research paid off. Despite having worked closely with the NIST team, even the FBI Hostage Rescue Team was surprised at how well the ultimate design matched their needs: a small tool that could take pictures of fingerprints or faces and send the data wirelessly to a central hub for analysis, all with a minimum of touch strokes.

But Theofanos, Stanton and Choong wanted to take the program further. Smart phones with touch screen devices were becoming available—could they scale their design down even more to fit a 2-inch x 3-inch screen? The team created a demo program for just such an available screen—and it scaled beautifully.

The NIST team already had been collaborating with other security agencies on something called Mobile ID, a method to help officers identify people quickly and easily on the scene, instead of taking people back to headquarters to be fingerprinted. The NIST researchers think this demo program might just be the solution. The next step is to integrate an actual finger print sensor into the demo program.

For more information about NIST’s mobile ID research, see

High-resolution images available

Permalink to this article

Evelyn Brown | Newswise Science News
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>