Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Handheld Touch Screen Device May Lead to Mobile Fingerprint ID

18.12.2009
The Federal Bureau of Investigation (FBI) Hostage Rescue Team had a problem—they needed a small, portable tool to identify fingerprints and faces, but couldn’t get anyone interested in building a solution for such a limited market.

So they came to the National Institute of Standards and Technology (NIST). The FBI told NIST they wanted something more portable than the 20-pound rugged laptop plus fingerprint scanner their hostage rescue teams lug around to aid in their anti-terrorism efforts, and this led to NIST developing a new application for a handheld touch-screen device.

The original task given to NIST by the FBI was simply to design and compile the requirements for the software the FBI needed to run on their platform of choice: a handheld device with a touch screen about the size of an index card. Paring down the visual interface to a mini-screen requires detailed understanding of what functionalities are most important. NIST researchers Mary Theofanos, Brian Stanton, Yee-Yin Choong and Ross Micheals brainstormed with the FBI team about what they required and, more importantly, watched them doing their work since most people can demonstrate what they need far better than they can articulate it.

The research paid off. Despite having worked closely with the NIST team, even the FBI Hostage Rescue Team was surprised at how well the ultimate design matched their needs: a small tool that could take pictures of fingerprints or faces and send the data wirelessly to a central hub for analysis, all with a minimum of touch strokes.

But Theofanos, Stanton and Choong wanted to take the program further. Smart phones with touch screen devices were becoming available—could they scale their design down even more to fit a 2-inch x 3-inch screen? The team created a demo program for just such an available screen—and it scaled beautifully.

The NIST team already had been collaborating with other security agencies on something called Mobile ID, a method to help officers identify people quickly and easily on the scene, instead of taking people back to headquarters to be fingerprinted. The NIST researchers think this demo program might just be the solution. The next step is to integrate an actual finger print sensor into the demo program.

For more information about NIST’s mobile ID research, see http://zing.ncsl.nist.gov/mobile_id.

High-resolution images available

Permalink to this article

Evelyn Brown | Newswise Science News
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>