Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth of adolescents’ fingerprints can be predicted

09.05.2011
Researchers develop new recognition procedure – Cooperation with Federal Criminal Police Office

Working in collaboration with the Federal Criminal Police Office (BKA), scientists at the University of Göttingen have developed a new procedure enabling the growth of fingerprints to be predicted. Up to now, BKA software has had difficulties in recognising that the fingerprints taken during adolescence and in adulthood were those of the same individual.


Fingerprint of a 12-year-old; specific features are marked in blue. Foto: Uni Göttingen


The same fingerprint at age 24; specific features are marked in red. Foto: Uni Göttingen

However, the error rate can be sharply reduced if the young person’s fingerprint is enlarged according to certain rules. These rules have now been determined by the researchers: the fingerprints of young persons grow evenly and in proportion to the person’s size. Their ‘pattern’ does not change significantly over the course of years. The results of the Biometrics Group at the Faculty of Mathematics and Computer Science are to be published in the journal IEEE Transactions on Information Forensics and Security.

The scientists began by investigating whether fingerprints grow in all directions evenly. “That was not completely clear from the outset, since human bones generally grow more strongly lengthwise, hence becoming narrower”, explains statistician Dr. Thomas Hotz. “But with the aid of special statistical procedures of so-called shape analysis we were able to demonstrate this.” It was then necessary to ascertain the factor by which a finger had increased in size: here it emerged that fingerprints of young people grow essentially in proportion to their body size. “We can therefore predict growth with the aid of growth tables for girls and boys”, says computer scientist Dr. Carsten Gottschlich.

Tested in practice, the methods turned out to be successful: the scientists were able to reduce the error rates of conventional fingerprint software markedly if the prints were previously enlarged by the corresponding factor. The BKA tested 48 fingerprints in a database of 3.25 million people. The software used up to now was able to assign the corresponding print of a young person in 38 cases and with the new method this was achieved in 47 cases – in one case the image quality was too poor for recognition to be possible.

In future, the BKA intends to integrate the method into its automatic fingerprint identification system (AFIS). All that is needed in order to be able to apply the growth correction is knowledge of the person’s age when the fingerprint was taken. “With the help of this method our system of handling young people’s fingerprints will be further enhanced. The joint effort has been worthwhile”, states Michael Hantschel, head of the BKA’s dactyloscopy department (AFIS) in Wiesbaden. The head of the research group at Göttingen University, Prof. Dr. Axel Munk, sees the project as a perfect example of collaboration between science and practice: “We began with a basic research question: How do fingerprints grow? With the help of modern procedures in mathematical statistics and using a BKA database we were able to answer the question. And the answer enabled us to model the growth effect in such a way that this, in turn, leads to relevant improvements in practice.”

Publication: Carsten Gottschlich, Thomas Hotz, Robert Lorenz, Stefanie Bernhardt, Michael Hantschel and Axel Munk. Modeling the Growth of Fingerprints Improves Matching for Adolescents. IEEE Transactions on Information Forensics and Security 2011. DOI: 10.1109/TIFS.2011.2143406

A preview of the article can be found on the internet at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751684.

Contact:
Dr. Thomas Hotz
Georg-August-Universität Göttingen
Fakultät für Mathematik und Informatik
Institut für Mathematische Stochastik
Goldschmidtstraße 7, 37077 Göttingen
Tel.: +49 (0)551 39-13517, Fax +49 (0)551 39-13505
Email: hotz@math.uni-goettingen.de
Internet: http://www.stochastik.math.uni-goettingen.de

Dr. Bernd Ebeling | Uni Göttingen
Further information:
http://www.uni-goettingen.de/de/3240.html?cid=3862
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751684

Further reports about: BKA IEEE Security Forum Transactions fingerprints recognition procedure

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>