Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth of adolescents’ fingerprints can be predicted

09.05.2011
Researchers develop new recognition procedure – Cooperation with Federal Criminal Police Office

Working in collaboration with the Federal Criminal Police Office (BKA), scientists at the University of Göttingen have developed a new procedure enabling the growth of fingerprints to be predicted. Up to now, BKA software has had difficulties in recognising that the fingerprints taken during adolescence and in adulthood were those of the same individual.


Fingerprint of a 12-year-old; specific features are marked in blue. Foto: Uni Göttingen


The same fingerprint at age 24; specific features are marked in red. Foto: Uni Göttingen

However, the error rate can be sharply reduced if the young person’s fingerprint is enlarged according to certain rules. These rules have now been determined by the researchers: the fingerprints of young persons grow evenly and in proportion to the person’s size. Their ‘pattern’ does not change significantly over the course of years. The results of the Biometrics Group at the Faculty of Mathematics and Computer Science are to be published in the journal IEEE Transactions on Information Forensics and Security.

The scientists began by investigating whether fingerprints grow in all directions evenly. “That was not completely clear from the outset, since human bones generally grow more strongly lengthwise, hence becoming narrower”, explains statistician Dr. Thomas Hotz. “But with the aid of special statistical procedures of so-called shape analysis we were able to demonstrate this.” It was then necessary to ascertain the factor by which a finger had increased in size: here it emerged that fingerprints of young people grow essentially in proportion to their body size. “We can therefore predict growth with the aid of growth tables for girls and boys”, says computer scientist Dr. Carsten Gottschlich.

Tested in practice, the methods turned out to be successful: the scientists were able to reduce the error rates of conventional fingerprint software markedly if the prints were previously enlarged by the corresponding factor. The BKA tested 48 fingerprints in a database of 3.25 million people. The software used up to now was able to assign the corresponding print of a young person in 38 cases and with the new method this was achieved in 47 cases – in one case the image quality was too poor for recognition to be possible.

In future, the BKA intends to integrate the method into its automatic fingerprint identification system (AFIS). All that is needed in order to be able to apply the growth correction is knowledge of the person’s age when the fingerprint was taken. “With the help of this method our system of handling young people’s fingerprints will be further enhanced. The joint effort has been worthwhile”, states Michael Hantschel, head of the BKA’s dactyloscopy department (AFIS) in Wiesbaden. The head of the research group at Göttingen University, Prof. Dr. Axel Munk, sees the project as a perfect example of collaboration between science and practice: “We began with a basic research question: How do fingerprints grow? With the help of modern procedures in mathematical statistics and using a BKA database we were able to answer the question. And the answer enabled us to model the growth effect in such a way that this, in turn, leads to relevant improvements in practice.”

Publication: Carsten Gottschlich, Thomas Hotz, Robert Lorenz, Stefanie Bernhardt, Michael Hantschel and Axel Munk. Modeling the Growth of Fingerprints Improves Matching for Adolescents. IEEE Transactions on Information Forensics and Security 2011. DOI: 10.1109/TIFS.2011.2143406

A preview of the article can be found on the internet at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751684.

Contact:
Dr. Thomas Hotz
Georg-August-Universität Göttingen
Fakultät für Mathematik und Informatik
Institut für Mathematische Stochastik
Goldschmidtstraße 7, 37077 Göttingen
Tel.: +49 (0)551 39-13517, Fax +49 (0)551 39-13505
Email: hotz@math.uni-goettingen.de
Internet: http://www.stochastik.math.uni-goettingen.de

Dr. Bernd Ebeling | Uni Göttingen
Further information:
http://www.uni-goettingen.de/de/3240.html?cid=3862
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751684

Further reports about: BKA IEEE Security Forum Transactions fingerprints recognition procedure

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>