Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth of adolescents’ fingerprints can be predicted

09.05.2011
Researchers develop new recognition procedure – Cooperation with Federal Criminal Police Office

Working in collaboration with the Federal Criminal Police Office (BKA), scientists at the University of Göttingen have developed a new procedure enabling the growth of fingerprints to be predicted. Up to now, BKA software has had difficulties in recognising that the fingerprints taken during adolescence and in adulthood were those of the same individual.


Fingerprint of a 12-year-old; specific features are marked in blue. Foto: Uni Göttingen


The same fingerprint at age 24; specific features are marked in red. Foto: Uni Göttingen

However, the error rate can be sharply reduced if the young person’s fingerprint is enlarged according to certain rules. These rules have now been determined by the researchers: the fingerprints of young persons grow evenly and in proportion to the person’s size. Their ‘pattern’ does not change significantly over the course of years. The results of the Biometrics Group at the Faculty of Mathematics and Computer Science are to be published in the journal IEEE Transactions on Information Forensics and Security.

The scientists began by investigating whether fingerprints grow in all directions evenly. “That was not completely clear from the outset, since human bones generally grow more strongly lengthwise, hence becoming narrower”, explains statistician Dr. Thomas Hotz. “But with the aid of special statistical procedures of so-called shape analysis we were able to demonstrate this.” It was then necessary to ascertain the factor by which a finger had increased in size: here it emerged that fingerprints of young people grow essentially in proportion to their body size. “We can therefore predict growth with the aid of growth tables for girls and boys”, says computer scientist Dr. Carsten Gottschlich.

Tested in practice, the methods turned out to be successful: the scientists were able to reduce the error rates of conventional fingerprint software markedly if the prints were previously enlarged by the corresponding factor. The BKA tested 48 fingerprints in a database of 3.25 million people. The software used up to now was able to assign the corresponding print of a young person in 38 cases and with the new method this was achieved in 47 cases – in one case the image quality was too poor for recognition to be possible.

In future, the BKA intends to integrate the method into its automatic fingerprint identification system (AFIS). All that is needed in order to be able to apply the growth correction is knowledge of the person’s age when the fingerprint was taken. “With the help of this method our system of handling young people’s fingerprints will be further enhanced. The joint effort has been worthwhile”, states Michael Hantschel, head of the BKA’s dactyloscopy department (AFIS) in Wiesbaden. The head of the research group at Göttingen University, Prof. Dr. Axel Munk, sees the project as a perfect example of collaboration between science and practice: “We began with a basic research question: How do fingerprints grow? With the help of modern procedures in mathematical statistics and using a BKA database we were able to answer the question. And the answer enabled us to model the growth effect in such a way that this, in turn, leads to relevant improvements in practice.”

Publication: Carsten Gottschlich, Thomas Hotz, Robert Lorenz, Stefanie Bernhardt, Michael Hantschel and Axel Munk. Modeling the Growth of Fingerprints Improves Matching for Adolescents. IEEE Transactions on Information Forensics and Security 2011. DOI: 10.1109/TIFS.2011.2143406

A preview of the article can be found on the internet at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751684.

Contact:
Dr. Thomas Hotz
Georg-August-Universität Göttingen
Fakultät für Mathematik und Informatik
Institut für Mathematische Stochastik
Goldschmidtstraße 7, 37077 Göttingen
Tel.: +49 (0)551 39-13517, Fax +49 (0)551 39-13505
Email: hotz@math.uni-goettingen.de
Internet: http://www.stochastik.math.uni-goettingen.de

Dr. Bernd Ebeling | Uni Göttingen
Further information:
http://www.uni-goettingen.de/de/3240.html?cid=3862
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751684

Further reports about: BKA IEEE Security Forum Transactions fingerprints recognition procedure

More articles from Information Technology:

nachricht Switchable DNA mini-machines store information
26.06.2017 | Emory Health Sciences

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>