Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group led by UCLA Engineering devises new method for securing location-sensitive data

27.07.2010
Location-based security is ensured by using quantum mechanics

A research group led by computer scientists at the UCLA Henry Samueli School of Engineering and Applied Science has proved that cryptography — the practice and study of hiding information — that is based solely on physical location is possible by using quantum mechanics.

Such a method, the researchers say, allows one to encrypt and decrypt data at a secure location without pre-sharing any cryptographic keys that can be used to lock or unlock sensitive information.

The idea behind location-based cryptography is that only a recipient at a precise geographic location can receive an encrypted message — the location itself acts as the credential required for generating an encryption key.

This type of cryptography could be useful in several settings. For example, one could communicate with a military base with a guarantee that only someone physically present at the base will have access to the information. Furthermore, the location-based method eliminates the need for distributing and storing keys, one of the most difficult tasks in cryptography.

A central tool in location-based cryptography is secure location verification, which is a method for verifying the geographical position of a device in a secure manner, according to Rafail Ostrovsky, a UCLA professor of computer science and mathematics.

"Securely proving a location where such a proof cannot be spoofed, and securely communicating only to a device in a particular location and nowhere else is extremely important," Ostrovsky said. "Often, the location of a device determines its credentials. Our recent paper shows how our method allows one to securely communicate to a device only in a particular location and without any other assumptions regarding prior interaction with the device at this location."

The strategy, outlined in a new research paper currently available at http://arxiv.org/abs/1005.1750, was recently accepted to the highest-rated theoretical computer science peer-review conference, the 2010 IEEE Symposium on Foundations of Computer Science.

According to Ostrovsky, the problem of secure positioning has been widely studied by the wireless security community. It was assumed that the classical approach, based on triangulation, offered a secure solution. However, last year, a research group led by Ostrovsky proved that this approach cannot offer security against a coalition of dishonest persons that actively try to break the scheme, thereby breaking all known classical location verification systems.

Surprisingly, with the help of quantum mechanics, the task of location verification can be done in a secure way, even in the presence of colluding adversaries, the researchers say.

The research group has recently shown that if one sends quantum bits — the quantum equivalent of a bit — instead of only classical bits, a secure protocol can be obtained such that the location of a device cannot be spoofed. This, in turn, leads to a key-exchange protocol based solely on location.

The core idea behind the protocol is the "no-cloning" principle of quantum mechanics. By making a device give the responses of random challenges to several verifiers, the protocol ensures that multiple colluding devices cannot falsely prove any location. This is because an adversarial device can either store the quantum state of the challenge or send it to a colluding adversary, but not both.

The proposed method does not require any involved quantum computation other than creating and measuring quantum bits, which could be implemented with existing technology.

The research group includes Ostrovsky; UCLA computer science Ph.D. students Nishanth Chandran and Ran Gelles; scientific staff member Serge Fehr, of Centrum Wiskunde & Informatica (CWI) in the Netherlands; and Vipul Goyal of Microsoft Research, India.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Wileen Wong Kromhout | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>