Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group led by UCLA Engineering devises new method for securing location-sensitive data

27.07.2010
Location-based security is ensured by using quantum mechanics

A research group led by computer scientists at the UCLA Henry Samueli School of Engineering and Applied Science has proved that cryptography — the practice and study of hiding information — that is based solely on physical location is possible by using quantum mechanics.

Such a method, the researchers say, allows one to encrypt and decrypt data at a secure location without pre-sharing any cryptographic keys that can be used to lock or unlock sensitive information.

The idea behind location-based cryptography is that only a recipient at a precise geographic location can receive an encrypted message — the location itself acts as the credential required for generating an encryption key.

This type of cryptography could be useful in several settings. For example, one could communicate with a military base with a guarantee that only someone physically present at the base will have access to the information. Furthermore, the location-based method eliminates the need for distributing and storing keys, one of the most difficult tasks in cryptography.

A central tool in location-based cryptography is secure location verification, which is a method for verifying the geographical position of a device in a secure manner, according to Rafail Ostrovsky, a UCLA professor of computer science and mathematics.

"Securely proving a location where such a proof cannot be spoofed, and securely communicating only to a device in a particular location and nowhere else is extremely important," Ostrovsky said. "Often, the location of a device determines its credentials. Our recent paper shows how our method allows one to securely communicate to a device only in a particular location and without any other assumptions regarding prior interaction with the device at this location."

The strategy, outlined in a new research paper currently available at http://arxiv.org/abs/1005.1750, was recently accepted to the highest-rated theoretical computer science peer-review conference, the 2010 IEEE Symposium on Foundations of Computer Science.

According to Ostrovsky, the problem of secure positioning has been widely studied by the wireless security community. It was assumed that the classical approach, based on triangulation, offered a secure solution. However, last year, a research group led by Ostrovsky proved that this approach cannot offer security against a coalition of dishonest persons that actively try to break the scheme, thereby breaking all known classical location verification systems.

Surprisingly, with the help of quantum mechanics, the task of location verification can be done in a secure way, even in the presence of colluding adversaries, the researchers say.

The research group has recently shown that if one sends quantum bits — the quantum equivalent of a bit — instead of only classical bits, a secure protocol can be obtained such that the location of a device cannot be spoofed. This, in turn, leads to a key-exchange protocol based solely on location.

The core idea behind the protocol is the "no-cloning" principle of quantum mechanics. By making a device give the responses of random challenges to several verifiers, the protocol ensures that multiple colluding devices cannot falsely prove any location. This is because an adversarial device can either store the quantum state of the challenge or send it to a colluding adversary, but not both.

The proposed method does not require any involved quantum computation other than creating and measuring quantum bits, which could be implemented with existing technology.

The research group includes Ostrovsky; UCLA computer science Ph.D. students Nishanth Chandran and Ran Gelles; scientific staff member Serge Fehr, of Centrum Wiskunde & Informatica (CWI) in the Netherlands; and Vipul Goyal of Microsoft Research, India.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Wileen Wong Kromhout | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>