Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Group led by UCLA Engineering devises new method for securing location-sensitive data

Location-based security is ensured by using quantum mechanics

A research group led by computer scientists at the UCLA Henry Samueli School of Engineering and Applied Science has proved that cryptography — the practice and study of hiding information — that is based solely on physical location is possible by using quantum mechanics.

Such a method, the researchers say, allows one to encrypt and decrypt data at a secure location without pre-sharing any cryptographic keys that can be used to lock or unlock sensitive information.

The idea behind location-based cryptography is that only a recipient at a precise geographic location can receive an encrypted message — the location itself acts as the credential required for generating an encryption key.

This type of cryptography could be useful in several settings. For example, one could communicate with a military base with a guarantee that only someone physically present at the base will have access to the information. Furthermore, the location-based method eliminates the need for distributing and storing keys, one of the most difficult tasks in cryptography.

A central tool in location-based cryptography is secure location verification, which is a method for verifying the geographical position of a device in a secure manner, according to Rafail Ostrovsky, a UCLA professor of computer science and mathematics.

"Securely proving a location where such a proof cannot be spoofed, and securely communicating only to a device in a particular location and nowhere else is extremely important," Ostrovsky said. "Often, the location of a device determines its credentials. Our recent paper shows how our method allows one to securely communicate to a device only in a particular location and without any other assumptions regarding prior interaction with the device at this location."

The strategy, outlined in a new research paper currently available at, was recently accepted to the highest-rated theoretical computer science peer-review conference, the 2010 IEEE Symposium on Foundations of Computer Science.

According to Ostrovsky, the problem of secure positioning has been widely studied by the wireless security community. It was assumed that the classical approach, based on triangulation, offered a secure solution. However, last year, a research group led by Ostrovsky proved that this approach cannot offer security against a coalition of dishonest persons that actively try to break the scheme, thereby breaking all known classical location verification systems.

Surprisingly, with the help of quantum mechanics, the task of location verification can be done in a secure way, even in the presence of colluding adversaries, the researchers say.

The research group has recently shown that if one sends quantum bits — the quantum equivalent of a bit — instead of only classical bits, a secure protocol can be obtained such that the location of a device cannot be spoofed. This, in turn, leads to a key-exchange protocol based solely on location.

The core idea behind the protocol is the "no-cloning" principle of quantum mechanics. By making a device give the responses of random challenges to several verifiers, the protocol ensures that multiple colluding devices cannot falsely prove any location. This is because an adversarial device can either store the quantum state of the challenge or send it to a colluding adversary, but not both.

The proposed method does not require any involved quantum computation other than creating and measuring quantum bits, which could be implemented with existing technology.

The research group includes Ostrovsky; UCLA computer science Ph.D. students Nishanth Chandran and Ran Gelles; scientific staff member Serge Fehr, of Centrum Wiskunde & Informatica (CWI) in the Netherlands; and Vipul Goyal of Microsoft Research, India.

The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Wileen Wong Kromhout | EurekAlert!
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>