Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grids: More than just an infrastructure

26.09.2008
Enabling Grids for E-sciencE (EGEE) is holding its 5th annual conference this week in Istanbul and it is the breadth of research areas using EGEE that keeps the collaboration vibrant.

At each meeting more and more new work is unveiled and this year was no different, with researchers from 50 countries around the world highlighting their latest research in the conference's demonstrations and poster sessions.

EGEE is committed to attracting as many research areas to use grid technologies as possible. In the last 4 years it has been primarily a science grid with applications ranging from particle physics to geology. This year, however, the Italian project ArchaeoGRID demonstrated how the Grid can be used to research the social sciences. The team used the Grid to combine research from across the social sciences to study the rise and fall of societies through the ages, the historical factors that led to global change and even the human effect on the environment.

Climate change is one of the most important issues being researched in modern science and ArchaeoGRID is not the only project investigating this problem using grid technology. EGEE's Earth Sciences Cluster has used Grid services to store, mine and visualise environmental data. The group are already working on seismic and space weather modelling, as well as studying the relationships between regional climate and vegetation change. The ArcheoGRID and Earth Sciences Cluster projects demonstrate not only how different the approaches to solving a single problem can be but also the flexibility of EGEE, supporting both these widely differing areas of research while contributing to the global warming debate.

One of the major driving forces behind the development of the Grid is the Worldwide LHC Computing Grid, WLCG. With the start-up of the Large Hadron Collider, the world’s most powerful particle accelerator on 10th September, EGEE is facing its greatest scientific challenge yet. Some 15 Petabytes of data will be generated by the LHC’s giant detectors every year, and the Grid will run up to 300,000 executed programs, or jobs per day. Other physics experiments across the globe, which are already capturing data and regularly producing results, also use the EGEE infrastructure. These include the two main Tevatron experiments at Fermi National Accelerator Laboratory, Illinois, US (CDF and DZero), the BaBar experiment, at the Stanford Linear Accelerator Center, California, US and the H1 and ZEUS experiments located at the electron-proton collider HERA at DESY in Hamburg, Germany.

One of the greatest EGEE success stories has been the WISDOM project, a collaboration of eight core institutions in five countries, that has helped to fast-track the development of new drugs to fight malaria and avian flu. This year the people who make up the WISDOM project are using their grid experiences to create a development environment for the entire bio-informatics community. Initiatives such as these demonstrate how the EGEE infrastructure has matured, becoming an integral part of everyday research that will work to accelerate research into many more cures.

The medical community has been interested in grids for a while, not just for their ability to provide a massive amount of processing power but for EGEE's expertise in storage, data delivery and digital security research. A European-wide infrastructure that allows transparent access to medical data without compromising the patients’ personal information is the holy grail for hospitals and medical professionals.

The Medical Data Manager has been designed by EGEE to interfacewith the standard systems used by hospitals and medics across the globe. Doctors will be able to study medical images and case notes from anywhere in the world, while maintaining individual anonymity and ensuring only relevant information is made available to authorised users. EGEE grid technologies have the potential to globalise medical research and transform patient care.

Catherine Gater | alfa
Further information:
http://www.eu-egee.org/

Further reports about: Accelerator ArchaeoGRID EGEE Grids LHC Computing Grid

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>