Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grids get down to business

15.10.2008
New technology developed by European researchers allows companies to deploy their business processes using grid computing and, even better, it validates a platform that gives easy access to grid resources. It is a big deal.

Grid computing, desktop networks that share computer resources, were a big deal in the 1990s when they first started to appear. They allowed the Search for Extraterrestrial Intelligence (SETI) to borrow from volunteer computers the enormous computing resources required to analyse the background hum of the Universe. So far the enthusiasts have had no luck finding proof that ET phoned home, so the world lost interest in grids.

But serious science has taken to the power of supercomputing for solving grand challenges like protein-folding analysis, climate modelling and earthquake simulation, with European projects spearheading the way.

Quietly and discreetly, European researchers have created a system that allows managers to design and deploy business processes across a grid. They have thus validated a platform that delivers on the promise of easily accessed grid resources. People are listening again.

Difficult and time-consuming

Rightly so, as this is a big deal. Grids have, for the most part, remained the preserve of large, scientific institutions and companies. They are difficult to set up, even more difficult to manage on a day-to-day basis, and developing a new task or workflow can take many months.

No longer. The EU-funded A-WARE project has developed a platform that allows easy access to grid resources and has validated its approach by enabling grid deployment across large enterprises.

The work is barely finished and already the project partners have potential customers keen to get their hands on their work. Airbus actually joined the project to get access to just this kind of grid functionality. A major European petroleum company is in the final stages of becoming customer number two. Many big businesses are clamouring for the software.

Understandable enthusiasm

It is an understandable enthusiasm. Grids allow different computing platforms, like Windows PCs, Mac OS X laptops and Linux servers to share resources.

“It is very important for companies like Airbus, because they have so many different types of computer for each department. Maybe PCs for inventory and Solaris desktops for design, for example. Grids can link those together,” explains Claudio Cacciari, a researcher with the project. “This helps to correct the legacy issues that computer networks develop over time.”

“But we also designed the system so that it could understand business processes rendered in languages like Business Process Modeling Notation (BPMN). The A-WARE platform works with existing enterprise application standards.”

This means that business experts do not need to be grid experts to develop new processes on the system. It will have an enormously positive impact on companies by both extending the functionality and flexibility of their enterprise systems, and by enabling powerful, but easy to use, grid applications.

Many complex problems

Airbus tested this system out, too. The company’s engineers wanted to model the acoustic impact of the engine, placed in slightly different places, on the pilot. This is a complex problem, involving large calculations of fluid dynamics.

But that is the beauty of the A-WARE system. It offers the simplicity of a network with the high-octane horsepower of a grid, and the process-development software of an industrial-strength enterprise application.

The A-WARE system works on three layers: the grid-layer, a web-based portal layer that gives easy access to grid functionality and resources, and middleware to link the two.

It applied the platform to business processes because it is a compelling test case – a complex environment where easy-to-use systems are essential. It has also proved to be a canny commercial choice, too.

But A-WARE’s work will have a greater impact by setting the standard for easy-to-access grid computing. It opens the way for the regular use of grids in a many other sectors. It is grid computing for the rest of us.

The A-WARE project received funding from the Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90092

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>