Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greedy algorithms best for multiple targets

09.12.2010
What algorithms should an air defense system work with? Particle swarm algorithms if there are ten targets to be hit. If there are more than ten targets, greedy algorithms work best. These findings are presented by researcher Fredrik Johansson at the Informatics Research Centre, University of Skövde, in Sweden.

So-called TEWA systems (Threat Evaluation & Weapon Allocation) are used to protect strategic targets from enemy attacks, such as an airfield that needs to be protected from incoming missiles.

The systems discover threats, evaluates the threats, and aims the defender’s weapons system to be able to knock out the threat. The final decision to fire is then made by an operator.

Researcher Fredrik Johansson at the Informatics Research Centre, University of Skövde, in Sweden, recently defended his doctoral thesis on algorithms for TEWA systems.

“In the existing research literature there are proposals regarding what algorithms may be appropriate to use in TEWA systems. I have developed methods to test which algorithms work best in practice,” explains Fredrik Johansson.

Fredrik Johansson’s study shows that what determines the choice of algorithm is the number of weapons in the TEWA system and the number of targets the system has to deal with.

“So-called particle swarm algorithms are effective if it’s a matter of up to about ten targets and ten weapons. If the TEWA system needs to keep track of more targets and weapons, we should use what are called greedy algorithms instead,” says Fredrik Johansson.

A greedy algorithm – simply put – is fast but not perfect. The algorithm works under broad guidelines and does not test all the alternatives necessary to obtain an optimal solution. The fact that it doesn’t need to test certain solutions makes it a rapid algorithm, a property that is crucial in a TEWA system.

“You can’t let it take many seconds between the system discovering a threat and the operator deciding whether or not to fire,” says Fredrik Johansson.

In previous studies TEWA systems have nearly always been treated as two parts: threat evaluation and weapon allocation separately. Fredrik Johansson’s study is one of the first to see the system as a unit. But to claim that you are the first to study something may be difficult when it comes to TEWA systems.

“Those conducting research in this field don’t always know what knowledge there is beneath the surface. There’s probably some research about TEWA systems that is secret and not available to us ordinary researchers,” concludes Fredrik Johansson.

For further information, please contact: Fredrik Johansson: fredrik.johansson@foi.se

Pressofficer: Ulf Nylén; ulf.nylen@his.se; +46 500-44 80 35

FACT: Algorithm
An algorithm is a sequence of instructions for computations that solves a computational problem in a finite number of steps and thereby can constitute a basis for a computer program.

Ulf Nylén | idw
Further information:
http://www.vr.se

Further reports about: Greedy algorithms Informatic TEWA system algorithm

More articles from Information Technology:

nachricht Satellite data for agriculture
28.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>