Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greedy algorithms best for multiple targets

09.12.2010
What algorithms should an air defense system work with? Particle swarm algorithms if there are ten targets to be hit. If there are more than ten targets, greedy algorithms work best. These findings are presented by researcher Fredrik Johansson at the Informatics Research Centre, University of Skövde, in Sweden.

So-called TEWA systems (Threat Evaluation & Weapon Allocation) are used to protect strategic targets from enemy attacks, such as an airfield that needs to be protected from incoming missiles.

The systems discover threats, evaluates the threats, and aims the defender’s weapons system to be able to knock out the threat. The final decision to fire is then made by an operator.

Researcher Fredrik Johansson at the Informatics Research Centre, University of Skövde, in Sweden, recently defended his doctoral thesis on algorithms for TEWA systems.

“In the existing research literature there are proposals regarding what algorithms may be appropriate to use in TEWA systems. I have developed methods to test which algorithms work best in practice,” explains Fredrik Johansson.

Fredrik Johansson’s study shows that what determines the choice of algorithm is the number of weapons in the TEWA system and the number of targets the system has to deal with.

“So-called particle swarm algorithms are effective if it’s a matter of up to about ten targets and ten weapons. If the TEWA system needs to keep track of more targets and weapons, we should use what are called greedy algorithms instead,” says Fredrik Johansson.

A greedy algorithm – simply put – is fast but not perfect. The algorithm works under broad guidelines and does not test all the alternatives necessary to obtain an optimal solution. The fact that it doesn’t need to test certain solutions makes it a rapid algorithm, a property that is crucial in a TEWA system.

“You can’t let it take many seconds between the system discovering a threat and the operator deciding whether or not to fire,” says Fredrik Johansson.

In previous studies TEWA systems have nearly always been treated as two parts: threat evaluation and weapon allocation separately. Fredrik Johansson’s study is one of the first to see the system as a unit. But to claim that you are the first to study something may be difficult when it comes to TEWA systems.

“Those conducting research in this field don’t always know what knowledge there is beneath the surface. There’s probably some research about TEWA systems that is secret and not available to us ordinary researchers,” concludes Fredrik Johansson.

For further information, please contact: Fredrik Johansson: fredrik.johansson@foi.se

Pressofficer: Ulf Nylén; ulf.nylen@his.se; +46 500-44 80 35

FACT: Algorithm
An algorithm is a sequence of instructions for computations that solves a computational problem in a finite number of steps and thereby can constitute a basis for a computer program.

Ulf Nylén | idw
Further information:
http://www.vr.se

Further reports about: Greedy algorithms Informatic TEWA system algorithm

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>