Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great white's mighty bite revealed

06.08.2008
Using sophisticated computer modelling techniques they have also calculated that the bite force of the great white's extinct relative, the gigantic fossil species Carcharodon megalodon (also known as Big Tooth) is the highest of all time, making it arguably the most formidable carnivore ever to have existed.

Shark researchers from the University of New South Wales, Newcastle University, NSW Department of Primary Industries Fisheries (Australia) and University of California (USA) reveal unprecedented information about the feeding habits of the two carnivores by analysing anatomical and biomechanical data from their skull and muscle tissues.

They generated 3-Dimensional models the skull of a 2.4-metre male great white shark on the basis of multiple x-ray images generated by a computerized tomography (CT) scanner.

Using novel imaging and analysis software and a technique known as "finite element analysis", the team reconstructed the great white's skull, jaws and muscles, remodelling them as hundreds of thousands of tiny discrete, but connected parts.

They then digitally "crash tested" this computer model to simulate different scenarios and reveal the powerful bite of the fearsome predator, as well as the complex distributions of stresses and strains that these forces impose on the shark's jaws.

It was found that the largest great whites have a bite force of up to 1.8 tonnes. By comparison, a large African lion can produce around 560 kg of bite force and a human approximately 80 kg – making the great white's bite more than 20 times harder than that of a human. UNSW's Steve Wroe, the study's lead author, says the great white is without a doubt one of the hardest biting creatures alive, possibly the hardest.

"Nature has endowed this carnivore with more than enough bite force to kill and eat large and potentially dangerous prey," he says. "Pound for pound the great whites' bite is not particularly impressive, but the sheer size of the animal means that in absolute terms it tops the scales. It must also be remembered that its extremely sharp serrated teeth require relatively little force to drive them through thick skin, fat and muscle". The scientists also found that although shark's jaws are comprised of elastic cartilage (as opposed to the bony jaws of most other fish), this did not greatly reduce the power of its bite.

Wroe and colleagues applied the same methodology to estimate the bite force of the gigantic Carcharodon megalodon, which may have grown to 16 metres in length and weighed up to 100 tonnes -- at least 30 times as heavy as the largest living great whites.

They predict that it could generate between 10.8 to 18.2 tonnes of bite force. Fossil evidence suggests that Big Tooth was an active predator of large whales that immobilised its huge prey by biting off their tail and flippers before feeding at will.

A comparison of Tyrannosaurus rex with megalodon suggests that the great Tyrant Lizard was no match for the giant shark. " Estimates of maximum bite force for T. rex are around 3.1 tonnes, greater than for a living white shark, but puny compared to Big Tooth."

Dr. Stephen Wroe | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>