Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great white's mighty bite revealed

06.08.2008
Using sophisticated computer modelling techniques they have also calculated that the bite force of the great white's extinct relative, the gigantic fossil species Carcharodon megalodon (also known as Big Tooth) is the highest of all time, making it arguably the most formidable carnivore ever to have existed.

Shark researchers from the University of New South Wales, Newcastle University, NSW Department of Primary Industries Fisheries (Australia) and University of California (USA) reveal unprecedented information about the feeding habits of the two carnivores by analysing anatomical and biomechanical data from their skull and muscle tissues.

They generated 3-Dimensional models the skull of a 2.4-metre male great white shark on the basis of multiple x-ray images generated by a computerized tomography (CT) scanner.

Using novel imaging and analysis software and a technique known as "finite element analysis", the team reconstructed the great white's skull, jaws and muscles, remodelling them as hundreds of thousands of tiny discrete, but connected parts.

They then digitally "crash tested" this computer model to simulate different scenarios and reveal the powerful bite of the fearsome predator, as well as the complex distributions of stresses and strains that these forces impose on the shark's jaws.

It was found that the largest great whites have a bite force of up to 1.8 tonnes. By comparison, a large African lion can produce around 560 kg of bite force and a human approximately 80 kg – making the great white's bite more than 20 times harder than that of a human. UNSW's Steve Wroe, the study's lead author, says the great white is without a doubt one of the hardest biting creatures alive, possibly the hardest.

"Nature has endowed this carnivore with more than enough bite force to kill and eat large and potentially dangerous prey," he says. "Pound for pound the great whites' bite is not particularly impressive, but the sheer size of the animal means that in absolute terms it tops the scales. It must also be remembered that its extremely sharp serrated teeth require relatively little force to drive them through thick skin, fat and muscle". The scientists also found that although shark's jaws are comprised of elastic cartilage (as opposed to the bony jaws of most other fish), this did not greatly reduce the power of its bite.

Wroe and colleagues applied the same methodology to estimate the bite force of the gigantic Carcharodon megalodon, which may have grown to 16 metres in length and weighed up to 100 tonnes -- at least 30 times as heavy as the largest living great whites.

They predict that it could generate between 10.8 to 18.2 tonnes of bite force. Fossil evidence suggests that Big Tooth was an active predator of large whales that immobilised its huge prey by biting off their tail and flippers before feeding at will.

A comparison of Tyrannosaurus rex with megalodon suggests that the great Tyrant Lizard was no match for the giant shark. " Estimates of maximum bite force for T. rex are around 3.1 tonnes, greater than for a living white shark, but puny compared to Big Tooth."

Dr. Stephen Wroe | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>