Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grasping the Tree of Life: There is an App for That Too

21.09.2010
The scientists who put an innovative tree of life online last year now have made that same resource available -- free -- for smartphones.
The new "TimeTree" application lets anyone with an Apple iPhone harness a vast Internet storehouse of data about the diversity of life, from bacteria to humans. The intuitive interface is designed to answer a simple question, quickly and authoritatively: how long ago did species A and species B share a common ancestor?

"Our new iPhone app can be fun for people who want to learn how long ago their cat and dog began evolving down different evolutionary paths, in addition to being a useful scientific tool," said Blair Hedges, professor of biology at Penn State University. The new smartphone app for the iPhone, iPod, and iPad gives anyone the power to explore an area at the forefront of comparative biology and to find his or her place in the timetree of life. The app is the latest extension of the Timetree of Life project, which was conceived by Hedges with Sudhir Kumar, a Ph.D. graduate of Penn State who now is director of the Biodesign Institute's Center for Evolutionary Medicine and Informatics at Arizona State University.

To download the free TimeTree app from the Apple Store, use "TimeTree" as a search term. An instructive video that briefly describes the TimeTree application for the iPhone is online at .

Although the TimeTree app provides a sophisticated means of mining scientific knowledge, using it is easy. Simply type the names of two organisms -- for example, swordfish and sardine -- into the iPhone interface. TimeTree searches its massive web archive and returns its findings within seconds. Swordfish (Xiphias gladius) and sardine (Sardina pilchardus) shared a common ancestor some 245 million years ago, before swimming their separate ways. Along the left margin of the iPhone display is a geological timescale with data points marking each scientific study TimeTree used to reach its result. "One of the most important things about this knowledgebase," Kumar said, "is that it makes it possible for anyone to see the current agreements and disagreements in the field -- immediately."

Timetrees are used widely in research in evolutionary biology, as well as in other fields. They are used to explore the tree of life with the best scientific estimates of two critical factors: the historical order in which the different lifeforms branched off in new evolutionary directions on the tree of life -- the phylogeny factor -- plus the number of millions of years ago when these branching events occurred -- the timescale factor. Timetrees are used in the realm of human health, for example, to determine when disease-causing organisms first appeared and the speed at which their genes have changed -- information that could lead to better treatments or cures.

Astrobiologists and geologists also use timetrees to study how life arose and diversified and how organisms affected the Earth's environment, including the atmosphere, throughout time.

Click on image for high-resolution file.

The Timetree of Life from an assembly of individual timetrees. Each of the 1,610 terminal branches represents a family or family-level taxon.The ultimate goal of the whole Timetree of Life project, according to Hedges, is "to chart the timescale of life -- to discover when each species and all their ancestors originated, all the way back to the origin of life some four billion years ago." The first phase of this ambitious undertaking appeared last year with the simultaneous release of an online resource called "TimeTreeWeb," and an accompanying reference book, titled "The Timetree of Life" (Oxford University Press), which is edited by Hedges and Kumar and contains contributions from 105 leading scientific authorities. The TimeTree book and the web resource are freely available at www.timetree.org. The Timetree of Life web resource and iPhone app draw on The National Center for Biotechnology Information's comprehensive taxonomy browser, which contains the names and phylogenetic lineages of more than 160,000 organisms.

The resources that Hedges and Kumar have compiled in the Timetree of Life project so far form a public knowledgebase, accumulating and cataloging thousands of evolutionary-branching times for organisms available in the peer-reviewed scientific literature. TimeTree is both easier and more versatile than traditional means of searching for information on the divergence of species. One of the key advantages is TimeTree's ability to access graphical information that previously had been archived in scientific studies, inaccessible to traditional methods of data retrieval that primarily are text based. Another advantage is TimeTree's highly dynamic character -- information from new scientific discoveries is being added to the knowledgebase continually, revealing the TimeTree of Life with ever-sharpening detail.

"We're still in the infancy of timetree building," Hedges said. "There are millions and millions of known species whose genes scientists worldwide are working to sequence, and there are many more species that have yet to be discovered. We are looking forward to adding these emerging new data to the TimeTree knowledgebase so that everyone can easily explore the tree of life and its timescale."

Support for developing the Timetree of Life project, including its smartphone app, has come from the U. S. National Science Foundation, the Astrobiology Institute of the U. S. National Aeronautics and Space Administration, the Science Foundation of Arizona, and the Biodesign Institute at Arizona State University.

CONTACTS

Sudhir Kumar at Arizona State: (+1) 623-225-5230, s.kumar@asu.edu
Blair Hedges at Penn State: (+1) 814-865-9991, sbh1@psu.edu
Joe Caspermeyer (PIO at Arizona State): (+1) 480-727-0369
Barbara Kennedy (PIO at Penn State): (+1) 814-863-4682, science@psu.edu

Barbara Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>