Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene: A patterned template for molecular packing

11.10.2012
Simulations of atomic-scale processes show how to trap and pack molecules in patterned graphene sheets that may have molecular storage applications

Graphene’s versatile electronic, chemical and mechanical properties have placed it center stage in physical sciences research, with attention currently focused on its potential applications.


An array of graphone domains (blue), containing trapped fullerene molecules (red), distributed in a graphene matrix. Reproduced, with permission, from Ref. 1 © 2012 IOP Publishing

Computational experts are contributing unique insights by investigating graphene-based structures in silico. By exploring the structure and properties of graphone — graphene that is hydrogenated on one side — a research team from Singapore and the USA has provided a potential template for packing molecules. These structures could be useful for trapping molecules for energy storage or biological applications.

Led by Chilla Damodara Reddy of the A*STAR Institute of High Performance Computing, Singapore, the research team computationally constructed a large square graphene sheet with hydrogen atoms covalently bonded above every other carbon atom to form a graphone domain. Depending on the size of the domain, the graphone regions distorted into three distinct three-dimensional architectures. Small domains morphed into a cap shape, while larger domains resulted in interfacing graphene and graphone segments curving in opposite directions with the center of the graphone patch remaining flat. A third, intermediate, morphology showed undulations both at the graphone/graphene interface and in the center of the hydrogenated graphone. A 5% lattice mismatch between graphene and graphone caused the three-dimensional distortions.

All of the structures were stable well above room temperature. Reddy and co-workers also observed so-called ‘energy wells’ in the graphone domains, which they tested to determine whether or not they could trap molecules. They used fullerenes as their model molecules.

The researchers designed materials with graphone domains a suitable distance apart and of appropriate diameter to optimize the trapping of multiple molecules within the energy wells. They also proposed a minimum spacing between the domains to prevent instability between trapped molecules of neighboring domains.
Reddy and his co-workers extended the work to explore the possibility of trapping multiple fullerenes within one graphone domain. They showed that a domain with a diameter of 2 nanometers could trap three fullerenes in a triangular array, while one with a diameter of 4 nanometers could trap twelve molecules in different undulations of the graphone domain (see image). These structures were also stable at room temperature; although at very high temperatures — above 700 kelvin — the molecules could escape the confines of the energy well.

“Our graphene-based structures provide a potential template for packing other molecules, such as hydrogen and methanol molecules, which could be used in energy applications,” say the researchers. They could also trap proteins and DNA for use in biological applications.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

References

Reddy, C. D., Zhang, Y. W. & Shenoy, V. B. Patterned graphone — a novel template for molecular packing. Nanotechnology 23, 165303 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>