Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goodbye ground control: autonomous nanosatellites

10.02.2016

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into space. Exploring mysterious light phenomena on the moon.


An autonomous nanosatellite detects a meteor and autonomously decides what to do next: That is the research focus of the Würzburg aerospace engineers.

(Graphic: Hakan Kayal)

These are just a few examples of unpredictable events taking place on Earth or other planets. Observing such events with satellites requires special, highly autonomous technologies. That is the focus of Professor Hakan Kayal's team at the Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany.

The Würzburg aerospace engineers have a plan: In future, nanosatellites, measuring around 10x10x30 cm, could permanently patrol the orbit of Earth or other planets with running cameras. When they encounter strange phenomena, they would have to decide autonomously what to do next: Just send a picture to Earth? Or is it worth observing the phenomenon and realign the camera?

Autonomous target planning is a challenge

"It is extremely challenging to put such an autonomous target planning system into practice. So far, the technology hasn't been available for nanosatellites," says Professor Kayal. According to Kayal, however, the technology is crucial for interplanetary missions, because communication with ground control takes too long.

For instance, it can take 20 minutes for a satellite to send a radio message from Mars to Earth. Until it has been decided what the satellite should do, the interesting event on Mars may already be gone.

For such missions, Kayal's team has developed ASAP, an autonomous sensor and planning system for small satellites. Its key components are to be tested in space for the first time now: The Würzburg scientists are adapting the system to SONATE, a nanosatellite set to be launched into Earth's orbit in 2019.

Automatic diagnostics system for satellites

The SONATE mission is sponsored by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt - DLR) with funds from the German Federal Ministry of Economic Affairs and Energy. The sponsors will contribute around 1.3 million euros to the project over the next four years. Besides the ASAP system, the nanosatellite will take another novelty into orbit: ADIA/ADIA++, an automatic diagnostics system for satellites, developed by Kayal's team in cooperation with computer scientist Professor Frank Puppe from Würzburg.

"We want to use ADIA to autonomously predict potential faults and malfunctions on board satellites, find the root cause and handle it more efficiently," the professors explain. At present, troubleshooting is performed via remote control from Earth. By accelerating this process, many damages or even total losses might be avoided in future.

When testing the system during the SONATE mission, the Würzburg computer scientists will produce several faults on board the nanosatellite. Whether ADIA will be capable of recognising what is normal and what is faulty aboard the satellite remains to be seen.

Students involved in the research

Students of aerospace programmes at the University of Würzburg will have the chance to work on the SONATE project in the next four years: either as assistants or within the scope of master or bachelor theses. Professor Kayal also incorporates the topic in his lectures and seminars to create close ties between academia and state-of-the-art research.

Communicating with interplanetary satellites

NACOMI is another project that is open to students. Equally funded by the DLR with 310,000 euros from the German Federal Ministry of Economic Affairs and Energy, its focus is on developing communication technologies for nanosatellites that are on their way to other planets. The harsh space radiation is a major challenge in this context. Cosmic rays in the interplanetary space are much stronger than on an Earth orbit where the Earth's magnetic field has a protective effect.

The project is also supported by the industry. For the time being, the tests are conducted on Earth, namely in the laboratories of the Würzburg computer science department. The ultimate goal is to develop a prototype in 2018 that may get the chance to prove itself in space in a potential follow-up project.

Kayal's team is working at the front line of this project, too. "NASA is presently running a similar project, but apart from that the development in this field is in its early stages. If we complete this project successfully, Germany will benefit as a technology centre," Kayal says.

The German Federal Ministry of Economic Affairs and Energy supports the projects based on a decision by the Bundestag under funding code 50RM1606 (SONATE), 50RM1231 (ADIA/ADIA++) and 50YB1608 (NACOMI).

Contact

Prof. Dr. Hakan Kayal, Professor of Space Technology at the Chair of Computer Science VIII, University of Würzburg, Phone +49 931 31-86649, hakan.kayal@uni-wuerzburg.de

Weitere Informationen:

http://www8.informatik.uni-wuerzburg.de/mitarbeiter/kayal0/ To Hakan Kayal's homepage
http://www.luft-und-raumfahrt.informatik.uni-wuerzburg.de Aviation and Space Information Technology (Bachelor) at the JMU
http://www.spacemaster.uni-wuerzburg.de/ SpaceMaster: Master in Space Science and Technology at the JMU

Robert Emmerich | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>