Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goodbye ground control: autonomous nanosatellites

10.02.2016

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into space. Exploring mysterious light phenomena on the moon.


An autonomous nanosatellite detects a meteor and autonomously decides what to do next: That is the research focus of the Würzburg aerospace engineers.

(Graphic: Hakan Kayal)

These are just a few examples of unpredictable events taking place on Earth or other planets. Observing such events with satellites requires special, highly autonomous technologies. That is the focus of Professor Hakan Kayal's team at the Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany.

The Würzburg aerospace engineers have a plan: In future, nanosatellites, measuring around 10x10x30 cm, could permanently patrol the orbit of Earth or other planets with running cameras. When they encounter strange phenomena, they would have to decide autonomously what to do next: Just send a picture to Earth? Or is it worth observing the phenomenon and realign the camera?

Autonomous target planning is a challenge

"It is extremely challenging to put such an autonomous target planning system into practice. So far, the technology hasn't been available for nanosatellites," says Professor Kayal. According to Kayal, however, the technology is crucial for interplanetary missions, because communication with ground control takes too long.

For instance, it can take 20 minutes for a satellite to send a radio message from Mars to Earth. Until it has been decided what the satellite should do, the interesting event on Mars may already be gone.

For such missions, Kayal's team has developed ASAP, an autonomous sensor and planning system for small satellites. Its key components are to be tested in space for the first time now: The Würzburg scientists are adapting the system to SONATE, a nanosatellite set to be launched into Earth's orbit in 2019.

Automatic diagnostics system for satellites

The SONATE mission is sponsored by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt - DLR) with funds from the German Federal Ministry of Economic Affairs and Energy. The sponsors will contribute around 1.3 million euros to the project over the next four years. Besides the ASAP system, the nanosatellite will take another novelty into orbit: ADIA/ADIA++, an automatic diagnostics system for satellites, developed by Kayal's team in cooperation with computer scientist Professor Frank Puppe from Würzburg.

"We want to use ADIA to autonomously predict potential faults and malfunctions on board satellites, find the root cause and handle it more efficiently," the professors explain. At present, troubleshooting is performed via remote control from Earth. By accelerating this process, many damages or even total losses might be avoided in future.

When testing the system during the SONATE mission, the Würzburg computer scientists will produce several faults on board the nanosatellite. Whether ADIA will be capable of recognising what is normal and what is faulty aboard the satellite remains to be seen.

Students involved in the research

Students of aerospace programmes at the University of Würzburg will have the chance to work on the SONATE project in the next four years: either as assistants or within the scope of master or bachelor theses. Professor Kayal also incorporates the topic in his lectures and seminars to create close ties between academia and state-of-the-art research.

Communicating with interplanetary satellites

NACOMI is another project that is open to students. Equally funded by the DLR with 310,000 euros from the German Federal Ministry of Economic Affairs and Energy, its focus is on developing communication technologies for nanosatellites that are on their way to other planets. The harsh space radiation is a major challenge in this context. Cosmic rays in the interplanetary space are much stronger than on an Earth orbit where the Earth's magnetic field has a protective effect.

The project is also supported by the industry. For the time being, the tests are conducted on Earth, namely in the laboratories of the Würzburg computer science department. The ultimate goal is to develop a prototype in 2018 that may get the chance to prove itself in space in a potential follow-up project.

Kayal's team is working at the front line of this project, too. "NASA is presently running a similar project, but apart from that the development in this field is in its early stages. If we complete this project successfully, Germany will benefit as a technology centre," Kayal says.

The German Federal Ministry of Economic Affairs and Energy supports the projects based on a decision by the Bundestag under funding code 50RM1606 (SONATE), 50RM1231 (ADIA/ADIA++) and 50YB1608 (NACOMI).

Contact

Prof. Dr. Hakan Kayal, Professor of Space Technology at the Chair of Computer Science VIII, University of Würzburg, Phone +49 931 31-86649, hakan.kayal@uni-wuerzburg.de

Weitere Informationen:

http://www8.informatik.uni-wuerzburg.de/mitarbeiter/kayal0/ To Hakan Kayal's homepage
http://www.luft-und-raumfahrt.informatik.uni-wuerzburg.de Aviation and Space Information Technology (Bachelor) at the JMU
http://www.spacemaster.uni-wuerzburg.de/ SpaceMaster: Master in Space Science and Technology at the JMU

Robert Emmerich | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Football through the eyes of a computer
14.06.2018 | Universität Konstanz

nachricht People recall information better through virtual reality, says new UMD study
14.06.2018 | University of Maryland

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>