Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good code, bad computations: A computer security gray area

29.10.2008
If you want to make sure your computer or server is not tricked into undertaking malicious or undesirable behavior, it’s not enough to keep bad code out of the system.

Two graduate students from UC San Diego’s computer science department—Erik Buchanan and Ryan Roemer—have just published work showing that the process of building bad programs from good code using “return-oriented programming” can be automated and that this vulnerability applies to RISC computer architectures and not just the x86 architecture (which includes the vast majority of personal computers).

Last year, UC San Diego computer science professor Hovav Shacham formally described how return-oriented programming could be used to force computers with the x86 architecture to behave maliciously without introducing any bad code into the system. However, the attack required painstaking construction by hand and appeared to rely a unique quirk of the x86 design.

Ryan Roemer and Erik Buchanan, graduate students from UC San Diego’s computer science department published work showing that the building of bad programs from good code using “return-oriented programming” can be automated and that this vulnerability applies to RISC computer architectures and not just the x86 architecture (which includes the vast majority of personal computers).

This new automation and generalization work from graduate students and professors from UC San Diego’s Jacobs School of Engineering will be presented on October 28 at ACM’s Conference on Communications and Computer Security (CCS) 2008, one of the premier academic computer security conferences.

“Most computer security defenses are based on the notion that preventing the introduction of malicious code is sufficient to protect a computer. This assumption is at the core of trusted computing, anti-virus software, and various defenses like Intel and AMD’s no execute protections. There is a subtle fallacy in the logic, however: simply keeping out bad code is not sufficient to keep out bad computation,” said UC San Diego computer science professor Stefan Savage, an author on the CCS 2008 paper.

Return-oriented Programming

Return-oriented programming exploits start out like more familiar attacks on computers. The attacker takes advantage of a programming error in the target system to overwrite the runtime stack and divert program execution away from the path intended by the system’s designers. But instead of injecting outside code—the approach used in traditional malicious exploits—return-oriented programming enables attackers to create any kind of nasty computation or program by using just the existing code.

“You can create any kind of malicious program you can imagine—Turing complete functionality,” said Shacham.

For example, a user’s Web browser could be subverted to record passwords typed by the user or to send spam e-mail to all address book contacts, using only the code that makes up the browser itself.

“There is value in showing just how big of a potential problem return-oriented programming may turn out to be,” said computer science graduate student Erik Buchanan.

The term “return-oriented programming” describes the fact that the “good” instructions that can be strung together in order to build malicious programs need to end with a return command. The graduate students showed that the process of building these malicious programs from good code can be largely automated by grouping sets of instructions into “gadgets” and then abstracting much of the tedious work behind a programming language and compiler.

Imagine taking a 700 page book, picking and choosing words and phrases in no particular order and then assembling a 50 page story that has nothing to do with the original book. Return-oriented programming allows you to do something similar. Here the 700 page book is the code that makes up the system being attacked—for example, the standard C-language library libc—and the story is the malicious program the attacker wishes to have executed.

“We found that return-oriented programming poses a much more general vulnerability than people initially thought,” said computer science graduate student Ryan Roemer. He and Buchanan chose to study return-oriented programming for a class project after they heard Shacham outline a series of open questions in a guest lecture he gave in Savage’s computer security course last winter.

Living with Return-Oriented Programming

“The threat posed by return-oriented programming, across all architectures and systems, has negative implications for an entire class of security mechanisms: those that seek to prevent malicious computation by preventing the execution of malicious code,” the authors write in their CCS 2008 paper.

For instance, Intel and AMD have implemented security functionality into their chips (NX/XD) that prevents code from being executed from certain memory regions. Operating systems in turn use these features to prevent input data from being executed as code (e.g., Microsoft’s Data Execution Prevention feature introduced in Windows XP SP2). The new research from UC San Diego, however, highlights an entire class of exploits that would not be stopped by these security measures since no malicious code is actually executed. Instead, the stack is “hijacked” and forced to run good code in bad ways.

“We have demonstrated that return-oriented exploits are practical to write, as the complexity of gadget combination is abstracted behind a programming language and compiler. Finally, we argue that this approach provides a simple bypass for the vast majority of exploitation mitigations in use today,” the computer scientists write.

The authors outline a series of approaches to combat return-oriented programming. Eliminating vulnerabilities permitting control flow manipulation remains a high priority—as it has for 20 years. Other possibilities: hardware and software support for further constraining control flow and addressing the power of the return-oriented approach itself.

“Finally, if the approaches fail, we may be forced to abandon the convenient model that code is statically either good or bad, and instead focus on dynamically distinguishing whether a particular execution stream exhibits good or bad behavior,” the authors write.

"When Good Instructions Go Bad: Generalizing Return-Oriented Programming to RISC," by Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage, Department of Computer Science & Engineering University of California, San Diego's Jacobs School of Engineering.

This work was made possible by the National Science Foundation (NSF).

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>