Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gigabit data rates over copper telephone lines

10.07.2014

The next milestone in the build-out of the broadband access network is called Fiber-To-The-Distribution Point (FTTdp).

This concept calls for running optical fiber to a distribution point that can be flexibly installed relatively close to the customer premise. The existing copper infrastructure is utilized to complete the access line to and within the building. To determine how 1-2 Gbit/s data rates can actually be achieved in such environments, researchers from Fraunhofer ESK will be working with Lantiq and InnoRoute GmbH until 2016 as part of the FlexDP research project.


Fiber-To-The-Distribution Point (FTTdp) – The next evolutionary step on the road from conventional telephone network to full-fledged fiber provisioning

Achieving high access data rates requires utilization of the higher frequency ranges on the phone lines. This is possible only if the copper line segment of the data transmission channel is relatively short. With this in mind, Fraunhofer ESK is analyzing the channel properties within these high frequency ranges as part of the FlexDP project. Lantiq and InnoRoute will use the results of this work to eventually develop a reverse powered, flexible distribution point installed closer to the customer premise. Through a combination of research, implementation and testing, the partners are laying the groundwork for the practical application of FTTdp.

Measuring channel properties in the 300 MHz frequency range

... more about:
»ESK »Gigabit »MHz »affect »copper »existing »frequencies »properties »sporadic

VDSL2 utilizes frequencies up to 30 MHz. With the aim of achieving still higher data rates, Fraunhofer ESK is examining the use of frequencies up to 300 MHz. Apart from the transmission characteristics of the line, background noise and sporadic impulse interference are important factors that impact transmission speeds.

Higher frequency ranges permit the deployment of new transmission schemes such as G.fast, which operates up to 212 MHz and is currently in the standardization stage. By extending the currently used spectrum, data rates of up to 2 Gbit/s are theoretically possible, but only if the channel characteristics are consistently taken into consideration.

In order to gain a realistic picture of the situation in Germany, Fraunhofer ESK researchers identified and measured the various types of cables used in the country and examined typical customer premise wiring installations.

Based on this preparatory work and with new measurements in the 300 MHz extended frequency range, engineers will develop a simulation environment allowing them to recreate and test a variety of network scenario. Researchers will then be able to pinpoint early on any issues that affect high bit rate data transmission, thus paving the way for the development of reliable solutions. The know-how gleaned from this work will furthermore flow into future transmission system designs and installations.

Energy-efficient, flexible distribution points accelerate network build-out

Higher data rates with a hybrid network can be reached on short lines. With G.fast, this equates to a maximum of around 250 meters. It also requires locations closer to the customer premise, a task made easier if the distribution points are not dependent on existing power lines and instead are reverse power fed by the customer's telephone lines. That means the shoebox-sized distribution points must be extremely energy-efficient.

The major challenge of this remote power concept lies in the fluctuating loads placed on the network since each customer's behavior is usually different with respect to bandwidth usage and time of day. The hardware architectures and components that will be developed by Lantiq and InnoRoute must be as energy-efficient as possible, just like the transmission method itself, in order to deal with varying customer usage patterns.

That means a single customer modem must provide enough power to operate the distribution point. Transmitter and receiver components also need the capability to dynamically turn on and off, which in turn results in dynamic changes to the crosstalk interference environment. This creates another challenge in developing algorithms for stable transmission in dynamically-changing scenarios. Fraunhofer ESK is furthermore working on emergency operation concepts to compensate for power outages.

This project is being funded by the Bavarian Research Foundation.

For further details contact:

Marion Rathmann | Fraunhofer Institute for Embedded Systems and Communication Technologies ESK | PR & Marketing | phone +49 89 547088-395
Hansastraße 32 | 80686 München | www.esk.fraunhofer.de | marion.rathmann@esk.fraunhofer.de |

Weitere Informationen:

http://www.esk.fraunhofer.de/en/media.html

Kommunikation | Fraunhofer-Institut

Further reports about: ESK Gigabit MHz affect copper existing frequencies properties sporadic

More articles from Information Technology:

nachricht The Flexible Grid Involves its Users
27.09.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>