Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gigabit data rates over copper telephone lines

10.07.2014

The next milestone in the build-out of the broadband access network is called Fiber-To-The-Distribution Point (FTTdp).

This concept calls for running optical fiber to a distribution point that can be flexibly installed relatively close to the customer premise. The existing copper infrastructure is utilized to complete the access line to and within the building. To determine how 1-2 Gbit/s data rates can actually be achieved in such environments, researchers from Fraunhofer ESK will be working with Lantiq and InnoRoute GmbH until 2016 as part of the FlexDP research project.


Fiber-To-The-Distribution Point (FTTdp) – The next evolutionary step on the road from conventional telephone network to full-fledged fiber provisioning

Achieving high access data rates requires utilization of the higher frequency ranges on the phone lines. This is possible only if the copper line segment of the data transmission channel is relatively short. With this in mind, Fraunhofer ESK is analyzing the channel properties within these high frequency ranges as part of the FlexDP project. Lantiq and InnoRoute will use the results of this work to eventually develop a reverse powered, flexible distribution point installed closer to the customer premise. Through a combination of research, implementation and testing, the partners are laying the groundwork for the practical application of FTTdp.

Measuring channel properties in the 300 MHz frequency range

... more about:
»ESK »Gigabit »MHz »affect »copper »existing »frequencies »properties »sporadic

VDSL2 utilizes frequencies up to 30 MHz. With the aim of achieving still higher data rates, Fraunhofer ESK is examining the use of frequencies up to 300 MHz. Apart from the transmission characteristics of the line, background noise and sporadic impulse interference are important factors that impact transmission speeds.

Higher frequency ranges permit the deployment of new transmission schemes such as G.fast, which operates up to 212 MHz and is currently in the standardization stage. By extending the currently used spectrum, data rates of up to 2 Gbit/s are theoretically possible, but only if the channel characteristics are consistently taken into consideration.

In order to gain a realistic picture of the situation in Germany, Fraunhofer ESK researchers identified and measured the various types of cables used in the country and examined typical customer premise wiring installations.

Based on this preparatory work and with new measurements in the 300 MHz extended frequency range, engineers will develop a simulation environment allowing them to recreate and test a variety of network scenario. Researchers will then be able to pinpoint early on any issues that affect high bit rate data transmission, thus paving the way for the development of reliable solutions. The know-how gleaned from this work will furthermore flow into future transmission system designs and installations.

Energy-efficient, flexible distribution points accelerate network build-out

Higher data rates with a hybrid network can be reached on short lines. With G.fast, this equates to a maximum of around 250 meters. It also requires locations closer to the customer premise, a task made easier if the distribution points are not dependent on existing power lines and instead are reverse power fed by the customer's telephone lines. That means the shoebox-sized distribution points must be extremely energy-efficient.

The major challenge of this remote power concept lies in the fluctuating loads placed on the network since each customer's behavior is usually different with respect to bandwidth usage and time of day. The hardware architectures and components that will be developed by Lantiq and InnoRoute must be as energy-efficient as possible, just like the transmission method itself, in order to deal with varying customer usage patterns.

That means a single customer modem must provide enough power to operate the distribution point. Transmitter and receiver components also need the capability to dynamically turn on and off, which in turn results in dynamic changes to the crosstalk interference environment. This creates another challenge in developing algorithms for stable transmission in dynamically-changing scenarios. Fraunhofer ESK is furthermore working on emergency operation concepts to compensate for power outages.

This project is being funded by the Bavarian Research Foundation.

For further details contact:

Marion Rathmann | Fraunhofer Institute for Embedded Systems and Communication Technologies ESK | PR & Marketing | phone +49 89 547088-395
Hansastraße 32 | 80686 München | www.esk.fraunhofer.de | marion.rathmann@esk.fraunhofer.de |

Weitere Informationen:

http://www.esk.fraunhofer.de/en/media.html

Kommunikation | Fraunhofer-Institut

Further reports about: ESK Gigabit MHz affect copper existing frequencies properties sporadic

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>