Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gigabit data rates over copper telephone lines

10.07.2014

The next milestone in the build-out of the broadband access network is called Fiber-To-The-Distribution Point (FTTdp).

This concept calls for running optical fiber to a distribution point that can be flexibly installed relatively close to the customer premise. The existing copper infrastructure is utilized to complete the access line to and within the building. To determine how 1-2 Gbit/s data rates can actually be achieved in such environments, researchers from Fraunhofer ESK will be working with Lantiq and InnoRoute GmbH until 2016 as part of the FlexDP research project.


Fiber-To-The-Distribution Point (FTTdp) – The next evolutionary step on the road from conventional telephone network to full-fledged fiber provisioning

Achieving high access data rates requires utilization of the higher frequency ranges on the phone lines. This is possible only if the copper line segment of the data transmission channel is relatively short. With this in mind, Fraunhofer ESK is analyzing the channel properties within these high frequency ranges as part of the FlexDP project. Lantiq and InnoRoute will use the results of this work to eventually develop a reverse powered, flexible distribution point installed closer to the customer premise. Through a combination of research, implementation and testing, the partners are laying the groundwork for the practical application of FTTdp.

Measuring channel properties in the 300 MHz frequency range

... more about:
»ESK »Gigabit »MHz »affect »copper »existing »frequencies »properties »sporadic

VDSL2 utilizes frequencies up to 30 MHz. With the aim of achieving still higher data rates, Fraunhofer ESK is examining the use of frequencies up to 300 MHz. Apart from the transmission characteristics of the line, background noise and sporadic impulse interference are important factors that impact transmission speeds.

Higher frequency ranges permit the deployment of new transmission schemes such as G.fast, which operates up to 212 MHz and is currently in the standardization stage. By extending the currently used spectrum, data rates of up to 2 Gbit/s are theoretically possible, but only if the channel characteristics are consistently taken into consideration.

In order to gain a realistic picture of the situation in Germany, Fraunhofer ESK researchers identified and measured the various types of cables used in the country and examined typical customer premise wiring installations.

Based on this preparatory work and with new measurements in the 300 MHz extended frequency range, engineers will develop a simulation environment allowing them to recreate and test a variety of network scenario. Researchers will then be able to pinpoint early on any issues that affect high bit rate data transmission, thus paving the way for the development of reliable solutions. The know-how gleaned from this work will furthermore flow into future transmission system designs and installations.

Energy-efficient, flexible distribution points accelerate network build-out

Higher data rates with a hybrid network can be reached on short lines. With G.fast, this equates to a maximum of around 250 meters. It also requires locations closer to the customer premise, a task made easier if the distribution points are not dependent on existing power lines and instead are reverse power fed by the customer's telephone lines. That means the shoebox-sized distribution points must be extremely energy-efficient.

The major challenge of this remote power concept lies in the fluctuating loads placed on the network since each customer's behavior is usually different with respect to bandwidth usage and time of day. The hardware architectures and components that will be developed by Lantiq and InnoRoute must be as energy-efficient as possible, just like the transmission method itself, in order to deal with varying customer usage patterns.

That means a single customer modem must provide enough power to operate the distribution point. Transmitter and receiver components also need the capability to dynamically turn on and off, which in turn results in dynamic changes to the crosstalk interference environment. This creates another challenge in developing algorithms for stable transmission in dynamically-changing scenarios. Fraunhofer ESK is furthermore working on emergency operation concepts to compensate for power outages.

This project is being funded by the Bavarian Research Foundation.

For further details contact:

Marion Rathmann | Fraunhofer Institute for Embedded Systems and Communication Technologies ESK | PR & Marketing | phone +49 89 547088-395
Hansastraße 32 | 80686 München | www.esk.fraunhofer.de | marion.rathmann@esk.fraunhofer.de |

Weitere Informationen:

http://www.esk.fraunhofer.de/en/media.html

Kommunikation | Fraunhofer-Institut

Further reports about: ESK Gigabit MHz affect copper existing frequencies properties sporadic

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>