Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Computer Scientists Join Forces to Make Interactive 3D Graphics Part of the World Wide Web

06.08.2012
Interactive 3D graphics are not available on the World Wide Web even though almost all PCs as well as mobile and embedded devices already contain high-performance 3D graphics hardware to process it.

Now, computer scientists from the German Research Center for Artificial Intelligence and Fraunhofer Institute for Computer Graphics Research are joining forces to change that. Together, they are working to describe computer scenes in spatial detail directly within the websites’ code.


Car Design in 3D: Philipp Slusallek simplifies interactive 3D graphics on the World Wide Web.
bellhäuser - das bilderwerk

The German Research Center for Artificial Intelligence (DFKI) in Saarbrücken and the Fraunhofer Institute for Computer Graphics Research (Fraunhofer IGD) in Darmstadt have agreed on a common proposal to extend the Hypertext Markup Language (HTML) to also include advanced graphics capabilities.

The proposal allows for easily describing 3D geometry, its material properties (shaders), lights, and virtual cameras as new HTML elements. "These elements can be used almost exactly like existing HTML elements. Therefore, millions of Web developers can quickly begin to include interactive 3D visualizations in their Web applications," says Philipp Slusallek, professor for computer graphics at Saarland University and scientific director in the DFKI and in the Intel Visual Computing Institute (VCI).

"By identifying a small core of essential building blocks from the existing prototypes and scene-graph standards for a interactive three-dimensional experience on the Web, we have made it as simple as possible for browser vendors to include the new technology but still offer Web developers the full flexibility for designing fully dynamic and interactive 3D Web experiences," says Johannes Behr, head of the Competence Center for Visual Computing System Technologies at Fraunhofer IGD and leader of the X3DOM development team. The proposed declarative extension to HTML offers a high-level approach for Web developers, extending the low-level procedural approach to talk to graphics hardware now offered by WebGL. "Instead of requiring Web developers to become WebGL experts or learn new APIs, we are adding advanced graphics capabilities to HTML, allowing Web developers to reuse their existing skills and directly apply the Web technology they use on a daily basis," explains Kristian Sons, head of the XML3D research group at DFKI/VCI.

At least two implementations will be made available: For the short term a JavaScript implementation using WebGL for rendering will allow developers to get started immediately, while a native implementation integrated within the browser will offer optimal performance and full functionality.

The two institutes originally each had their own proposals, namely X3DOM and XML3D, but recently joined forces to define a common standard. The two groups distilled their technologies into the essential components needed for bringing interactive and highly dynamic 3D graphics to the declarative world of HTML. "Our two proposals were essential in order to gain experience and evaluate a number of different approaches," says Yvonne Jung, senior researcher and core developer for X3DOM at Fraunhofer IGD. This joint research was supported by the German Software-Cluster initiative and the Intel Visual Computing Institute at Saarland University.

The joint proposal will be officially presented at the SIGGRAPH 2012 and Web3D conferences this week in Los Angeles. A more detailed specification is scheduled to be presented to the World Wide Web Consortium (W3C) at its yearly Technical Plenary / Advisory Committee meeting (TPAC) in early November and will be offered to the W3C Community Group on "Declarative 3D for the Web" for further discussions and potential standardization.

Presentations about the joint proposal will be made at the following events around SIGGRAPH:

SIGGRAPH BOF: X3DOM a Declarative 3D Solution
WEDNESDAY, 8 AUGUST 10:00 AM - 11:00 AM |
Los Angeles Convention Center - Room 513
SIGGRAPH BOF: WebGL
WEDNESDAY, 8 AUGUST 4:00 PM - 5:00 PM |
JW Marriott Los Angeles L.A. Live - Gold Ballroom Salon 3
SIGGRAPH BOF: X3DOM a Declarative 3D Solution
WEDNESDAY, 8 AUGUST 10:00 AM - 11:00 AM |
Los Angeles Convention Center - Room 513
SIGGRAPH BOF: WebGL
WEDNESDAY, 8 AUGUST 4:00 PM - 5:00 PM |
JW Marriott Los Angeles L.A. Live - Gold Ballroom Salon 3
For more information, please contact:
Philipp Slusallek
Professor of Computer Graphics at Saarland University
Scientific Director in the German Research Center for Artificial Intelligence and Intel Visual Computing Institute

Email: slusallek@dfki.de

Dr. Johannes Behr
Head of the Competence Center for Visual Computing System Technologies
Fraunhofer IGD
Darmstadt, Germany
Email: johannes.behr@igd.fraunhofer.de
Kristian Sons
Head of the XML3D project
German Research Center for Artificial Intelligence
Saarbrücken, Germany
Phone: +49 681 85775 3833
Email: kristian.sons@dfki.de
Gordon Bolduan
Scientific Communicator
Phone: +49 681 302-70741
E-Mail: gbolduan@mmci.uni-saarland.de
Weitere Informationen:
http://www.x3dom.org
http://www.xml3d.org
http://www.w3.org/community/declarative3d/

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>