Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia Tech Turns iPhone Into spiPhone

19.10.2011
It’s a pattern that no doubt repeats itself daily in hundreds of millions of offices around the world: People sit down, turn on their computers, set their mobile phones on their desks and begin to work. What if a hacker could use that phone to track what the person was typing on the keyboard just inches away?

A research team at Georgia Tech has discovered how to do exactly that, using a smartphone accelerometer—the internal device that detects when and how the phone is tilted—to sense keyboard vibrations and decipher complete sentences with up to 80 percent accuracy. The procedure is not easy, they say, but is definitely possible with the latest generations of smartphones.

“We first tried our experiments with an iPhone 3GS, and the results were difficult to read,” said Patrick Traynor, assistant professor in Georgia Tech’s School of Computer Science. “But then we tried an iPhone 4, which has an added gyroscope to clean up the accelerometer noise, and the results were much better. We believe that most smartphones made in the past two years are sophisticated enough to launch this attack.”

Previously, Traynor said, researchers have accomplished similar results using microphones, but a microphone is a much more sensitive instrument than an accelerometer. A typical smartphone’s microphone samples vibration roughly 44,000 times per second, while even newer phones’ accelerometers sample just 100 times per second—two full orders of magnitude less often. Plus, manufacturers have installed security around a phone’s microphone; the phone’s operating system is programmed to ask users whether to give new applications access to most built-in sensors, including the microphone. Accelerometers typically are not protected in this way.

The technique works through probability and by detecting pairs of keystrokes, rather than individual keys (which still is too difficult to accomplish reliably, Traynor said). It models “keyboard events” in pairs, then determines whether the pair of keys pressed is on the left versus right side of the keyboard, and whether they are close together or far apart. After the system has determined these characteristics for each pair of keys depressed, it compares the results against a preloaded dictionary, each word of which has been broken down along similar measurements (i.e., are the letters left/right, near/far on a standard QWERTY keyboard). Finally, the technique only works reliably on words of three or more letters.

For example, take the word “canoe,” which when typed breaks down into four keystroke pairs: “C-A, A-N, N-O and O-E.” Those pairs then translate into the detection system’s code as follows: Left-Left-Near, Left-Right-Far, Right-Right-Far and Right-Left-Far, or LLN-LRF-RRF-RLF. This code is then compared to the preloaded dictionary and yields “canoe” as the statistically probable typed word. Working with dictionaries comprising about 58,000 words, the system reached word-recovery rates as high as 80 percent.

“The way we see this attack working is that you, the phone’s owner, would request or be asked to download an innocuous-looking application, which doesn’t ask you for the use of any suspicious phone sensors,” said Henry Carter, a PhD student in computer science and one of the study’s co-authors. “Then the keyboard-detection malware is turned on, and the next time you place your phone next to the keyboard and start typing, it starts listening.”

Mitigation strategies for this vulnerability are pretty simple and straightforward, Traynor said. First, since the study found an effective range of just three inches from a keyboard, phone users can simply leave their phones in their purses or pockets, or just move them further away from the keyboard. But a fix that puts less onus on users is to add a layer of security for phone accelerometers.

“The sampling rate for accelerometers is already pretty low, and if you cut it in half, you start to approach theoretical limitations that prevent eavesdropping. The malware simply does not have the data to work with,” Traynor said. “But most phone applications can still function even with that lower accelerometer rate. So manufacturers could set that as the default rate, and if someone downloads an application like a game that needs the higher sampling rate, that would prompt a permission question to the user to reset the accelerometer.”

In the meantime, Traynor said, users shouldn’t be paranoid that hackers are tracking their keystrokes through their iPhones.

“The likelihood of someone falling victim to an attack like this right now is pretty low,” he said. “This was really hard to do. But could people do it if they really wanted to? We think yes.”

The finding is reported in the paper, “(sp)iPhone: Decoding Vibrations From Nearby Keyboards Using Mobile Phone Accelerometers,” and will be presented Thursday, Oct. 20, at the 18th ACM Conference on Computer and Communications Security in Chicago. In addition to Carter, Traynor’s coauthors include Georgia Tech graduate student Arunabh Verman and Philip Marquardt of the MIT Lincoln Laboratory.

About the Georgia Tech College of Computing

The Georgia Tech College of Computing is a national leader in the creation of real-world computing breakthroughs that drive social and scientific progress. With its graduate program ranked 10th nationally by U.S. News and World Report, the College’s unconventional approach to education is defining the new face of computing by expanding the horizons of traditional computer science students through interdisciplinary collaboration and a focus on human-centered solutions. For more information about the Georgia Tech College of Computing, its academic divisions and research centers, please visit http://www.cc.gatech.edu.

Contact
Michael Terrazas
Assistant Director of Communications
College of Computing at Georgia Tech
mterraza@cc.gatech.edu

Michael Terrazas | EurekAlert!
Further information:
http://www.cc.gatech.edu

More articles from Information Technology:

nachricht New RFID transponder with large memory and a mobile handheld reader
31.03.2015 | Siemens AG

nachricht UAB Rolls Out New Technology to Help Users Combat Mobile Malware Attacks
31.03.2015 | University of Alabama at Birmingham

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Travelling pollution – East Asian human activities affect air quality in remote tropical forests

31.03.2015 | Earth Sciences

Why there was a sudden diversification of species

31.03.2015 | Earth Sciences

Speech dynamics are coded in the left motor cortex

31.03.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>