Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next generation gamers: Computer games aid recovery from stroke

16.05.2011
Computer games are not just for kids. New research published in Journal of NeuroEngineering and Rehabilitation, a BioMed Central open access journal, shows that computer games can speed up and improve a patient's recovery from paralysis after a stroke.

It is often difficult for stroke victims to recover hand and arm movement, and 80-90% of sufferers still have problems six months later. Scientists in America looked at a group of people who had impaired use of one arm after a stroke and found that computer simulations and cutting edge techniques, used by the film industry to produce computer generated action, could restore lost function.

While many current training regimes concentrate on regaining hand and arm movement separately, the computer games and robotic training aids used in this trial attempted to simultaneously improve function of both together. The games Plasma Pong and Hammer Task were used to improve hand/arm coordination, accuracy and speed, while the Virtual Piano and Hummingbird Hunt simulations helped to restore precision of grip and individual finger motion.

After training for two-three hours a day for eight days, all of the patients showed increased control of hand and arm during reaching. They all had better stability of the damaged limb, and greater smoothness and efficiency of movement. Kinematic analysis showed that they also had improved control over their fingers and were quicker at all test tasks. In contrast their uninjured arm and the arms of control game players, who had normal hand/arm function, showed no significant improvement at all.

Dr Alma Merians said, "Patients who played these games showed an average improvement in their standard clinical scores of 20-22% over the eight days. These results show that computer games could be an important tool in the recovery of paralysed limbs after stroke."

Media Contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. Robotically Facilitated Virtual Rehabilitation of Arm Transport Integrated With Finger Movement in Persons with Hemiparesis
Alma S Merians, Gerard G Fluet, Qinyin Qiu, Soha Saleh, Ian Lafond, Amy Davidow and Sergei V Adamovich

Journal of NeuroEngineering and Rehabilitation (in Press)

During embargo, article available here After embargo, article available at journal website

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. Journal of NeuroEngineering and Rehabilitation (JNER) is an open access, peer-reviewed online journal that aims to foster the publication of research work that results from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>