Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU scientists use unique model to predict active 2010 hurricane season

02.06.2010
Florida State University scientists who have developed a unique computer model with a knack for predicting hurricanes with unprecedented accuracy are forecasting an unusually active season this year.

Associate Scholar Scientist Tim LaRow and his colleagues at FSU's Center for Ocean-Atmospheric Prediction Studies (COAPS) say there will be an average of 17 named storms with 10 of those storms developing into hurricanes in the Atlantic this season, which begins today, June 1, and runs through Nov. 30. The historical seasonal average is 11 tropical storms with six of them becoming hurricanes.

"It looks like it will be a very busy season, and it only takes one hurricane making landfall to have devastating effects," LaRow said. "The predicted high number of tropical systems means there is an increased chance that the eastern United States or Gulf Coast will see a landfall this year."

The COAPS model, unveiled just last year, is one of only a handful of numerical models in the world being used to study seasonal hurricane activity, and it has already outperformed many other models. The model uses the university's high-performance computer to synthesize massive amounts of information including atmospheric, ocean and land data. A key component of the COAPS model is the use of predicted sea surface temperatures.

The 2009 forecast, the model's first, was on target: It predicted a below-average season, with a mean of eight named storms with four of them developing into hurricanes. There were nine named storms with three that became hurricanes.

The model's 2009 forecast, plus its hindcasts of the previous 14 hurricane seasons — that's when the data that existed prior to each season is plugged into the model to reforecast the season and then compared to what actually occurred — really show the model's precision. From 1995 to 2009, the model predicted a mean of 13.7 named storms of which a mean of 7.8 were hurricanes. In reality, the average during this period was 13.8 named storms with a mean of 7.9 hurricanes.

How the oil spill in the Gulf of Mexico will affect the development of tropical storms this year is a question that scientists are still trying to figure out, LaRow said. The oil on the ocean surface can diminish the amount of surface evaporation, which would lead to local increased ocean temperatures near the surface, but LaRow said he's made no adjustments to the model to account for the oil that continues to gush from an underwater well.

"The oil spill will probably have little influence on the hurricane season, but we don't know for sure since this spill is unprecedented," he said. "It's uncertain how exactly the atmospheric and oceanic conditions might change if the spill continues to grow."

COAPS researchers spent about five years developing and assessing the numerical model before putting it to the test with its first real-time forecast last year. Numerical models require major computing resources in order to make trillions of calculations using the equations of motion along with the best physical understanding of the atmosphere. By contrast, statistical models, such as the one that produces Colorado State University's annual forecast, use statistical relationships between oceanic and atmospheric variables to make a forecast.

COAPS received a $6.2 million, five-year grant from NOAA in 2006 that has been used, in part, to support the development of the model.

Tim LaRow | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>