Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU scientists use unique model to predict active 2010 hurricane season

02.06.2010
Florida State University scientists who have developed a unique computer model with a knack for predicting hurricanes with unprecedented accuracy are forecasting an unusually active season this year.

Associate Scholar Scientist Tim LaRow and his colleagues at FSU's Center for Ocean-Atmospheric Prediction Studies (COAPS) say there will be an average of 17 named storms with 10 of those storms developing into hurricanes in the Atlantic this season, which begins today, June 1, and runs through Nov. 30. The historical seasonal average is 11 tropical storms with six of them becoming hurricanes.

"It looks like it will be a very busy season, and it only takes one hurricane making landfall to have devastating effects," LaRow said. "The predicted high number of tropical systems means there is an increased chance that the eastern United States or Gulf Coast will see a landfall this year."

The COAPS model, unveiled just last year, is one of only a handful of numerical models in the world being used to study seasonal hurricane activity, and it has already outperformed many other models. The model uses the university's high-performance computer to synthesize massive amounts of information including atmospheric, ocean and land data. A key component of the COAPS model is the use of predicted sea surface temperatures.

The 2009 forecast, the model's first, was on target: It predicted a below-average season, with a mean of eight named storms with four of them developing into hurricanes. There were nine named storms with three that became hurricanes.

The model's 2009 forecast, plus its hindcasts of the previous 14 hurricane seasons — that's when the data that existed prior to each season is plugged into the model to reforecast the season and then compared to what actually occurred — really show the model's precision. From 1995 to 2009, the model predicted a mean of 13.7 named storms of which a mean of 7.8 were hurricanes. In reality, the average during this period was 13.8 named storms with a mean of 7.9 hurricanes.

How the oil spill in the Gulf of Mexico will affect the development of tropical storms this year is a question that scientists are still trying to figure out, LaRow said. The oil on the ocean surface can diminish the amount of surface evaporation, which would lead to local increased ocean temperatures near the surface, but LaRow said he's made no adjustments to the model to account for the oil that continues to gush from an underwater well.

"The oil spill will probably have little influence on the hurricane season, but we don't know for sure since this spill is unprecedented," he said. "It's uncertain how exactly the atmospheric and oceanic conditions might change if the spill continues to grow."

COAPS researchers spent about five years developing and assessing the numerical model before putting it to the test with its first real-time forecast last year. Numerical models require major computing resources in order to make trillions of calculations using the equations of motion along with the best physical understanding of the atmosphere. By contrast, statistical models, such as the one that produces Colorado State University's annual forecast, use statistical relationships between oceanic and atmospheric variables to make a forecast.

COAPS received a $6.2 million, five-year grant from NOAA in 2006 that has been used, in part, to support the development of the model.

Tim LaRow | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>