Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From science fiction to reality -- sonic tractor beam invented

28.10.2015

A team of researchers from the Universities of Bristol and Sussex in collaboration with Ultrahaptics have built the world's first sonic tractor beam that can lift and move objects using sound waves.

Tractor beams are mysterious rays that can grab and lift objects. The concept has been used by science-fiction writers, and programmes like Star Trek, but has since come to fascinate scientists and engineers. Researchers have now built a working tractor beam that uses high-amplitude sound waves to generate an acoustic hologram which can pick up and move small objects.


The research team has created three-dimensional acoustic fields with shapes such as fingers, twisters and cages. These acoustic fields are the first acoustic holograms that can exert forces on particles to levitate and manipulate them.

Image courtesy of Asier Marzo, Bruce Drinkwater and Sriram Subramanian © 2015

The technique, published in Nature Communications, could be developed for a wide range of applications, for example a sonic production line could transport delicate objects and assemble them, all without physical contact. On the other hand, a miniature version could grip and transport drug capsules or microsurgical instruments through living tissue.

Asier Marzo, PhD student and the lead author, said: "It was an incredible experience the first time we saw the object held in place by the tractor beam. All my hard work has paid off, it's brilliant."

Bruce Drinkwater, Professor of Ultrasonics in the University of Bristol's Department of Mechanical Engineering, added: "We all know that sound waves can have a physical effect. But here we have managed to control the sound to a degree never previously achieved."

Sriram Subramanian, Professor of Informatics at the University of Sussex and co-founder of Ultrahaptics, explained: "In our device we manipulate objects in mid-air and seemingly defy gravity. Here we individually control dozens of loudspeakers to tell us an optimal solution to generate an acoustic hologram that can manipulate multiple objects in real-time without contact."

The researchers used an array of 64 miniature loudspeakers to create high-pitch and high-intensity sound waves. The tractor beam works by surrounding the object with high-intensity sound and this creates a force field that keeps the objects in place. By carefully controlling the output of the loudspeakers the object can be either held in place, moved or rotated.

The team have shown that three different shapes of acoustic force fields work as tractor beams. The first is an acoustic force field that resembles a pair of fingers or tweezers. The second is an acoustic vortex, the objects becoming stuck-in and then trapped at the core and the third is best described as a high-intensity cage that surrounds the objects and holds them in place from all directions.

Previous work on acoustic studies had to surround the object with loudspeakers, which limits the extent of movement and restricts many applications. Last year, the University of Dundee presented the concept of a tractor beam but no objects were held in the ray.

###

Paper: Holographic acoustic elements for manipulation of levitated objects by Asier Marzo, Sue Ann Seah, Bruce W. Drinkwater, Deepak Ranjan Sahoo, Benjamin Long and Sriram Subramanian is published in Nature Communications.

Notes to editors:

Images and a video are available for download from the following URLs:

Images:

https://fluff.bris.ac.uk/fluff/u2/injf/Zz10dbXWuzY_PwBBakvZNAT2L/
Caption: The research team have created three-dimensional acoustic fields with shapes such as fingers, twisters and cages. These acoustic fields are the first acoustic holograms that can exert forces on particles to levitate and manipulate them.
Credit: Image courtesy of Asier Marzo, Bruce Drinkwater and Sriram Subramanian © 2015

https://fluff.bris.ac.uk/fluff/u3/injf/eIF6zEdNzrAHnz_PDcPYxAT2p/
Caption: Holograms are tridimensional light-fields that can be projected from a two-dimensional surface. The researchers have created acoustic holograms with shapes such as tweezers, twisters and cages that exert forces on particles to levitate and manipulate them.
Credit: Image courtesy of Asier Marzo, Bruce Drinkwater and Sriram Subramanian © 2015

Video:

https://fluff.bris.ac.uk/fluff/u3/injf/zDR6xMMb0AXXY0BvUeevtgT2P/
Caption: Acoustic holograms are projected from a flat surface and contrary to traditional holograms, they exert considerable forces on the objects contained within. The acoustic holograms can be updated in real-time to translate, rotate and combine levitated particles enabling unprecedented contactless manipulators such as tractor beams.
Credit: Video courtesy of Asier Marzo, Bruce Drinkwater and Sriram Subramanian © 2015

Twitter: @LabInteract, @sonic_bruce
Sriram Subramanian was formerly Professor of Human-Computer Interaction at the University of Bristol and is now Professor of Informatics at the University of Sussex.

About Ultrahaptics

Ultrahaptics, based in Bristol, UK, is the world's leading touchless haptics company. Their unique technology brings the sense of touch to touchless interfaces, creating the magical experience of feeling without touching.

For more information visit: http://www.ultrahaptics.com

Contacts:

Professor Bruce Drinkwater, Department of Mechanical Engineering, University of Bristol, tel: +44 (117) 331 5914, mobile: +44 7980 846822 or email: B.Drinkwater@bristol.ac.uk

Professor Sri Subramanian, University of Sussex, mobile: +44 7942 616920 or email: sriram@sussex.ac.uk

Heather Macdonald Tait, Ultrahaptics, tel: +44 (0)7414 811 089 or email: heather@ultrahaptics.com

Issued by the Public Relations Office, Communications & Marketing Services, University of Bristol, tel +44 (0)117 331 7276, mobile 07747 768805. Contact: Joanne Fryer. and Communications and External Affairs, University of Sussex, tel +44 (0)1273 877437. Contact: Jacqui Bealing.

Media Contact

Jacqui Bealing
press@sussex.ac.uk
44-127-367-8888

http://www.sussex.ac.uk 

Jacqui Bealing | EurekAlert!

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>