Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Free Software Makes Computer Mouse Easier for People with Disabilities

The hand moves the computer mouse, but the cursor doesn’t comply. The cursor doesn’t go where told.

The hand tries again. The cursor shoots past the intended target.

The hand tries a third time – and the cursor loops farther from the target than where it started. And the user is frustrated.

So it often goes for computer users whose motor disabilities prevent them from easily using a mouse.

As the population ages, more people are having trouble with motor control, but a University of Washington team has invented two mouse cursors that make clicking targets a whole lot easier. And neither requires additional computer hardware – just some free, downloadable software. The researchers hope that in exchange for the software, users offer feedback.

The Pointing Magnifier combines an area cursor with visual and motor magnification, reducing need for fine, precise pointing. The UW’s AIM Research Group, which invented the Pointing Magnifier, learned that users can much more easily acquire targets, even small ones, 23 percent faster with the Pointing Magnifier.

The magnifier runs on Windows-based computer systems. It replaces the conventional cursor with a larger, circular cursor that can be made even larger for users who have less motor control. To acquire a target, the user places the large cursor somewhere over the target, and clicks. The Pointing Magnifier then magnifies everything under that circular area until it fills the screen, making even tiny targets large. The user then clicks with a point cursor inside that magnified area, acquiring the target. Although the Pointing Magnifier requires two clicks, it’s much easier to use than a conventional mouse, which can require many clicks to connect with a target.

Screen magnifiers for people with visual impairments have been around a long time, but such magnifiers affect only the size of screen pixels, not the motor space in which users act, thus offering no benefit to users with motor impairments. The Pointing Magnifier enlarges both visual and motor space.

Software for the Pointing Magnifier includes a control panel that allows the user to adjust color, transparency level, magnification factor, and area cursor size. User preferences are saved when the application is closed. Keyboard shortcuts quickly enable or disable the Pointing Magnifier. The UW team is also making shortcuts customizable.

“It’s less expensive to create computer solutions for people who have disabilities if you focus on software rather than specialized hardware, and software is usually easier to procure than hardware,” said Jacob O. Wobbrock, an assistant professor in the Information School who leads the AIM Group.

His group’s paper on enhanced area cursors, including the Pointing Magnifier, was presented at the 2010 User Interface Software and Technology symposium in New York. A follow-on paper will be presented at a similar conference in May.

Another AIM technology, the Angle Mouse, similarly helps people with disabilities. Like the Pointing Magnifier, it may be downloaded, and two videos, one for general audiences and another for academic ones, are available as well.

When the Angle Mouse cursor initially blasts towards a target, the spread of movement angles, even for people with motor impairments, tends to be narrow, so the Angle Mouse keeps the cursor moving fast. However, when the cursor nears its target and the user tries to land, the angles formed by movements diverge sharply, so the Angle Mouse slows the cursor, enlarges motor space and makes the target easier to get into. The more trouble a user has, the larger the target will be made in motor space. (The target’s visual appearance will not change.)

Wobbrock compares the Angle Mouse to a race car. “On a straightaway, when the path is open, the car whips along, but in a tight corner, the car slows and makes a series of precise corrections, ensuring its accuracy.”

A study of the Angle Mouse included 16 people, half of whom had motor impairments. The Angle Mouse improved motor-impaired pointing performance by 10 percent over the regular Windows™ default mouse and 11 percent over sticky icons – an earlier innovation in which targets slow the cursor when it is inside them.

“Pointing is an essential part of using a computer, but it can be quite difficult and time consuming if dexterity is a problem,” Wobbrock said. “Even shaving one second off each time a person points may save hours over the course of a year.”

Wobbrock suggests that users try both the Pointing Magnifier and the Angle Mouse before deciding which they prefer.

“Our cursors make ubiquitous mice, touchpads, and trackballs more effective for people with motor impairments without requiring new, custom hardware,” Wobbrock said. “We’re achieving accessibility by improving devices that computer users already have. Making computers friendlier for everyone is the whole point of our work.”

The Pointing Magnifier work was funded by the National Science Foundation and the Natural Sciences and Engineering Research Council of Canada.

Co-authors of the research paper that included the Pointing Magnifier are Leah Findlater, Alex Jansen, Kristen Shinohara, Morgan Dixon, Peter Kamb, Joshua Rakita and Wobbrock.

The Angle Mouse work was supported by Microsoft Research, Intel Research and the National Science Foundation.

Co-authors of the Angle Mouse paper are Wobbrock, James Fogarty, Shih-Yen (Sean) Liu, Shunichi Kimuro, and Susumi Harada.

For more information or to provide feedback on the cursors, contact Wobbrock at 206-616-2541 or

Catherine O’Donnell | Newswise Science News
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>