Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluid dynamics: Resolving shockwaves more accurately

18.07.2013
A new computational scheme enables more stable simulations of shockwaves in fluids and may be scalable for large engineering designs

Vinh-Tan Nguyen and co-workers at the A*STAR Institute of High Performance Computing in Singapore have developed a more robust and efficient way to simulate shockwaves under various flow scenarios. Previous techniques for shockwave simulation are specific to particular flow problems, whereas this new method is applicable to shockwaves in any high-speed flow scenario, for example in aerodynamics or explosions.


Simulations of shockwaves in fluids as they initiate (left) and propagate (right), using a specially tuned computational mesh.
Copyright : 2013 A*STAR Institute of High Performance Computing

A shockwave is generated when a discontinuous change in fluid properties follows an abrupt increase in the pressure, temperature and density of the flow. “Strong and unsteady shockwaves can produce oscillations, which affect the stability of numerical solutions in the three-dimensional (3D) computational domain,” explains Nguyen. “The main aim of our technique is to resolve the front of a shockwave while preserving the overall accuracy of the simulation.”

In computational fluid dynamics, flows can be simulated with different levels of accuracy — a low-order approximation is based on a hypothesis, whereas a high-order approximation is one that is closest to reality, or the ‘finest-tuned’ approximation. Simulation accuracy is maintained by using as high-order approximation as possible, as well as by altering the resolution of the 3D computational mesh — a grid of interconnected data points that covers the spatial area of the flow.

“Simulating flows using high-order approximations triggers oscillations, which cause miscalculations at the front of shock waves where the flow is discontinuous,” explains Nguyen. “It therefore becomes counterproductive to have high-order approximations in place right across shock regions.”

To overcome this problem, Nguyen and his team placed a shockwave sensor within the flow to identify high-gradient shockwave fronts as they appeared. They then applied shock capturing schemes to resolve the fronts by reducing the approximation order in those specific regions.

Finally, the researchers increased the spatial resolution of the computational mesh in the localized shock areas to compensate for the lower-order approximations (see image). The 3D mesh is also programmed to rebuild itself following contact with a shockwave.

“With precise detection through the shockwave sensor we can apply the right capturing scheme to treat each shockwave, regardless of its strength,” explains Nguyen. “Our mesh adaptation procedure then simultaneously refines the mesh in shockwave regions and coarsens it in areas of least change, reducing computational costs significantly.”

In addition to its potential application in aerodynamics and blast analysis, the researchers believe that this scheme may be useful for simulating the interface between air and water, with huge potential for marine and offshore applications.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Nguyen, V.-T., Nguyen, H. H., Price, M. A. & Tan, J. K. Shock capturing schemes with local mesh adaptation for high speed compressible flows on three dimensional unstructured grids. Computers & Fluids 70, 126–135 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6703
http://www.researchsea.com

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>