Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Let your fingers do the driving

If you don't hear directions, you can feel them

If drivers are yakking on cell phones and don't hear spoken instructions to turn left or right from a passenger or navigation system, they still can get directions from devices that are mounted on the steering wheel and pull skin on the driver's index fingertips left or right, a University of Utah study found.

The researchers say they don't want their results to encourage dangerous and distracted driving by cell phone users. Instead, they hope the study will point to new touch-based directional devices to help motorists and hearing-impaired people drive more safely. The same technology also could help blind pedestrians with a cane that provides directional cues to the person's thumb.

"It has the potential of being a safer way of doing what's already being done – delivering information that people are already getting with in-car GPS navigation systems," says the study's lead author, William Provancher, an assistant professor of mechanical engineering at the University of Utah.

In addition, Provancher says he is "starting to meet with the Utah Division of Services for the Blind and Visually Impaired to better understand how our technology could help those with vision impairments. It could be used in a walking cane for the blind," with a moving button on the handle providing tactile navigation cues to help the person walk to the corner market, for example.

The system also could help hearing-impaired people get navigation information through their fingertips if they cannot hear a system's computerized voice, says University of Utah psychology Ph.D. student Nate Medeiros-Ward, the study's first author. "We are not saying people should drive and talk on a cell phone and that tactile [touch] navigation cues will keep you out of trouble."

Medeiros-Ward is scheduled to present the findings Tuesday, Sept. 28 in San Francisco during the Human Factors and Ergonomics Society's 54th annual meeting.

The study "doesn't mean it's safe to drive and talk on the cell phone," says co-author David Strayer, a professor of psychology at the University of Utah. "It was a test to show that even in situations where you are distracted by a cell phone, we can still communicate directional information to the driver via the fingertips even though they are 'blind' to everything else."

Provancher, Medeiros-Ward and Strayer conducted the study with Joel Cooper, who earned his psychology Ph.D. at the University of Utah and now works in Texas, and Andrew Doxon, a Utah doctoral student in mechanical engineering. The research was funded by the National Science Foundation and the University of Utah.

'Channels' Carry Information to the Brain

Provancher says the study was based on a "multiple resource model" of how people process information, in which resources are senses such as vision, hearing and touch that provide information to the brain.

"You can only process so much," he says. "The theory is that if you provide information through different channels, you can provide more total information. Our sense of touch is currently an unexplored means of communication in the car."

But does humanity really need yet another way to provide information to drivers who already are blabbering on cell phones, texting, changing CDs or radio stations, looking at or listening to navigation devices and screaming kids – not to mention trying to watch and listen to road conditions?

"The point is, it will help everybody," Provancher says. "We all have visual and audio distractions when driving. Having the steering wheel communicate with you through your fingertips provides more reliable navigation information to the driver."

Provancher says motorists already get some feedback through touch: vibration from missing a gear while shifting or a shimmying steering wheel due to tire problems.

"You can't look at two things at the same time," says Strayer. "You can't look at graphic display of where you should go and look out the windshield. It [touch-based information] is a nicer way to communicate with the driver without interfering with the basic information they typically need to drive safely. They need to look out the window to drive safely. They need to listen to the noise of traffic – sirens, horns and other vehicles. This tactile device provides information to the driver without taking their attention away from seeing and hearing information they need to be a safe driver."

The new study says automakers already use some tactile systems to warn of lane departures by drowsy drivers and monitor blind spots. But these devices generally twist the steering wheel (assisted steering), rather than simply prompting the driver to do so.

Drivers on Cell Phones Often Don't Hear Directions, but Can Feel Them

The study was conducted on a driving simulator that Strayer has used to demonstrate the hazards of driving while talking or texting on a cell phone. Two of Provancher's devices to convey information by touch were attached to the simulator's steering wheel so one came in contact with the index finger on each of the driver's hands.

During driving, each index fingertip rested on a red TrackPoint cap from an IBM ThinkPad computer – those little things that look like the eraser on the end of a pencil. When the drivers were supposed to turn left, the two touch devices gently stretched the skin of the fingertips to the left (counter clockwise); when a right turn was directed, the TrackPoint tugged the skin of the fingertips to the right (clockwise).

Nineteen University of Utah undergraduate students – six women and 13 men – participated in the study by driving the simulator. The screens that surround the driver's seat on three sides displayed a scene in which the driver was in the center lane of three straight freeway lanes, with no other traffic.

Four driving scenarios were used, each lasting six minutes and including, in random order, 12 cues to the driver to move to the right lane and 12 more to move left.

In two scenarios, the simulator drivers did not talk on cell phones and received direction instructions either from the simulator's computer voice or via the fingertip devices on the steering wheel. In the two other scenarios, the drivers talked on cell phones with a person in the laboratory and also received direction instructions, either from the computer voice or from the touch devices on the steering wheel.

Each participant did all four of the scenarios. The results:

In the two scenarios without cell phones, the drivers' accuracy in correctly moving left or right was nearly identical for those who received tactile directions through their fingertips (97.2 percent) or by computerized voice (97.6 percent).

That changed when the drivers talked on cell phones while operating the simulator. When drivers received fingertip navigation directions while talking, they were accurate 98 percent of the time, but when they received audio cues to turn right or left while talking on a cell phone, they changed lanes correctly only 74 percent of the time.

Strayer says the findings shouldn't be used to encourage cell phone use while driving because even if giving drivers directional information by touch works, "it's not going to help you with the other things you need to do while driving – watching out for pedestrians, noticing traffic lights, all the things you need to pay attention to."

A Touch of Product Development?

Provancher has patents and wants to commercialize his tactile feedback devices for steering wheels and other potential uses.

"If we were approached by an interested automaker, it could be in their production cars in three to five years," he says, noting he already has had preliminary talks with three automakers and a European original equipment manufacturer.

In addition to possible devices for the vision- and hearing-impaired, Provancher says the technology could be used in a handheld device to let people feel fingertip-stretch pulses – rather than hear clicks – as they scroll through an iPod music playlist. He also says it might be used as a new way to interact with an MP3 music player in a vehicle, or to control games.

Provancher set the stage for the tactile navigation devices in two research papers this year in the journal Transactions on Haptics, published by the Institute of Electrical and Electronics Engineers. Haptics is to the sense of touch what optics is to vision.

In one of those studies, Provancher tested a haptic device that stretched the fingertip skin in four horizontal directions (right, left, front, back) and found that relatively faster and larger (one twenty-fifth of an inch) movements conveyed direction information most accurately.

In that study, Provancher also mentioned other possible uses for such devices, including allowing command centers to direct emergency responders and urban soldiers to incident locations, or directing air traffic controllers' attention to important information on a computer screen.

For more information on Provancher's work on conveying information by touch, see:

For video of the touch-based navigation devices on a driving simulator, see:

University of Utah Public Relations
201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350

Lee J. Siegel | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>