Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprints provide clues to more than just identity

11.08.2008
Fingerprints can reveal critical evidence, as well as an identity, with the use of a new technology developed at Purdue University that detects trace amounts of explosives, drugs or other materials left behind in the prints.

The new technology also can distinguish between overlapping fingerprints left by different individuals - a difficult task for current optical forensic methods.

A team led by R. Graham Cooks, Purdue's Henry Bohn Hass Distinguished Professor of Analytical Chemistry, has created a tool that reads and provides an image of a fingerprint's chemical signature. The technology can be used to determine what a person recently handled.

"The classic example of a fingerprint is an ink imprint showing the unique swirls and loops used for identification, but fingerprints also leave behind a unique distribution of molecular compounds," Cooks said. "Some of the residues left behind are from naturally occurring compounds in the skin and some are from other surfaces or materials a person has touched."

The team's research will be detailed in a paper published in Friday's (Aug. 8) issue of Science.

Demian R. Ifa, a Purdue postdoctoral researcher and the paper's lead author, said the technology also can easily uncover fingerprints buried beneath others.

"Because the distribution of compounds found in each fingerprint can be unique, we also can use this technology to pull one fingerprint out from beneath layers of other fingerprints," Ifa said. "By looking for compounds we know to be present in a certain fingerprint, we can separate it from the others and obtain a crystal clear image of that fingerprint. The image could then be used with fingerprint recognition software to identify an individual."

Researchers examined fingerprints in situ or lifted them from different surfaces such as glass, metal and plastic using common clear plastic tape. They then analyzed them with a mass spectrometry technique developed in Cooks' lab.

Mass spectrometry works by first turning molecules into ions, or electrically charged versions of themselves, so their masses can be analyzed. Conventional mass spectrometry requires chemical separations, manipulations of samples and containment in a vacuum chamber for ionization and analysis. Cooks' technology performs the ionization step in the air or directly on surfaces outside of the mass spectrometer's vacuum chamber, making the process much faster and more portable, Ifa said.

The Purdue procedure performs the ionization step by spraying a stream of water in the presence of an electric field to create positively charged water droplets. Water molecules in the droplets contain an extra proton and are called ions. When the charged water droplets hit the surface of the sample being tested, they transfer their extra proton to molecules in the sample, turning them into ions. The ionized molecules are then vacuumed into the mass spectrometer to be measured and analyzed.

Researchers placed a section of tape containing a lifted fingerprint on a moving stage in front of the spectrometer. The spectrometer then sprayed small sections of the sample with the charged water droplets, obtaining data for each section and combining the data sets to create an analysis of the sample as a whole, Ifa said. Software was used to map the information and create an image of the fingerprint from the distribution and intensity of selected ions.

Additional co-authors of the paper are Nicholas E. Manicke and Allison L. Dill, graduate students in Purdue's chemistry department.

The research was performed within Purdue's Center for Analytical Instrumentation Development located at the Bindley Biosciences Center in Purdue's Discovery Park.

Cooks' device, called desorption electrospray ionization or DESI, has been commercialized by Indianapolis-based Prosolia Inc., and the research was funded by Office of Naval Research and Prosolia Inc.

Writer: Elizabeth K. Gardner, (765) 494-2081, ekgardner@purdue.edu
Sources: R. Graham Cooks, (765) 494-5263, cooks@purdue.edu
Demian Ifa, (765) 494-5262, difa@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>