Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprints provide clues to more than just identity

11.08.2008
Fingerprints can reveal critical evidence, as well as an identity, with the use of a new technology developed at Purdue University that detects trace amounts of explosives, drugs or other materials left behind in the prints.

The new technology also can distinguish between overlapping fingerprints left by different individuals - a difficult task for current optical forensic methods.

A team led by R. Graham Cooks, Purdue's Henry Bohn Hass Distinguished Professor of Analytical Chemistry, has created a tool that reads and provides an image of a fingerprint's chemical signature. The technology can be used to determine what a person recently handled.

"The classic example of a fingerprint is an ink imprint showing the unique swirls and loops used for identification, but fingerprints also leave behind a unique distribution of molecular compounds," Cooks said. "Some of the residues left behind are from naturally occurring compounds in the skin and some are from other surfaces or materials a person has touched."

The team's research will be detailed in a paper published in Friday's (Aug. 8) issue of Science.

Demian R. Ifa, a Purdue postdoctoral researcher and the paper's lead author, said the technology also can easily uncover fingerprints buried beneath others.

"Because the distribution of compounds found in each fingerprint can be unique, we also can use this technology to pull one fingerprint out from beneath layers of other fingerprints," Ifa said. "By looking for compounds we know to be present in a certain fingerprint, we can separate it from the others and obtain a crystal clear image of that fingerprint. The image could then be used with fingerprint recognition software to identify an individual."

Researchers examined fingerprints in situ or lifted them from different surfaces such as glass, metal and plastic using common clear plastic tape. They then analyzed them with a mass spectrometry technique developed in Cooks' lab.

Mass spectrometry works by first turning molecules into ions, or electrically charged versions of themselves, so their masses can be analyzed. Conventional mass spectrometry requires chemical separations, manipulations of samples and containment in a vacuum chamber for ionization and analysis. Cooks' technology performs the ionization step in the air or directly on surfaces outside of the mass spectrometer's vacuum chamber, making the process much faster and more portable, Ifa said.

The Purdue procedure performs the ionization step by spraying a stream of water in the presence of an electric field to create positively charged water droplets. Water molecules in the droplets contain an extra proton and are called ions. When the charged water droplets hit the surface of the sample being tested, they transfer their extra proton to molecules in the sample, turning them into ions. The ionized molecules are then vacuumed into the mass spectrometer to be measured and analyzed.

Researchers placed a section of tape containing a lifted fingerprint on a moving stage in front of the spectrometer. The spectrometer then sprayed small sections of the sample with the charged water droplets, obtaining data for each section and combining the data sets to create an analysis of the sample as a whole, Ifa said. Software was used to map the information and create an image of the fingerprint from the distribution and intensity of selected ions.

Additional co-authors of the paper are Nicholas E. Manicke and Allison L. Dill, graduate students in Purdue's chemistry department.

The research was performed within Purdue's Center for Analytical Instrumentation Development located at the Bindley Biosciences Center in Purdue's Discovery Park.

Cooks' device, called desorption electrospray ionization or DESI, has been commercialized by Indianapolis-based Prosolia Inc., and the research was funded by Office of Naval Research and Prosolia Inc.

Writer: Elizabeth K. Gardner, (765) 494-2081, ekgardner@purdue.edu
Sources: R. Graham Cooks, (765) 494-5263, cooks@purdue.edu
Demian Ifa, (765) 494-5262, difa@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>