Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Fingerprinting’ RFID Tags: Researchers Develop Anti-Counterfeiting Technology

20.11.2009
Engineering researchers at the University of Arkansas have developed a unique and robust method to prevent cloning of passive radio frequency identification tags.

The technology, based on one or more unique physical attributes of individual tags rather than information stored on them, will prevent the production of counterfeit tags and thus greatly enhance both security and privacy for government agencies, businesses and consumers.

“RFID tags embedded in objects will become the standard way to identify objects and link them to the cyberworld,” said Dale R. Thompson, associate professor of computer science and computer engineering. “However, it is easy to clone an RFID tag by copying the contents of its memory and applying them to a new, counterfeit tag, which can then be attached to a counterfeit product – or person, in the case of these new e-passports. What we’ve developed is an electronic fingerprinting system to prevent this from happening.”

Thompson and Jia Di, associate professor of computer science and computer engineering and co-principal investigator on the project, refer to the system as a fingerprint because they discovered that individual tags are unique, not because of the data or memory they contain, but because of radio-frequency and manufacturing differences.

As Thompson mentioned, RFID tags are becoming more prevalent. They have been used in a wide range of applications, including government processes, industry and manufacturing, supply-chain operations, payment and administration systems, and especially retail.

“In spite of this wide deployment, security and privacy issues have to be addressed to make it a dependable technology,” Thompson said.

A passive RFID tag harvests its power from an RFID reader, which sends radio frequency signals to the tag. The tag, which consists of a microchip connected to a radio antenna, modulates the signal and communicates back to the reader. Working with an Avery Dennison M4E testcube designed for determining the best placement of RFID tags on packages, Thompson, Di and students in the Security, Network, Analysis and Privacy Lab measured tags’ minimum power response at multiple frequencies.

The researchers did this using an algorithm that repeatedly sent reader-to-tag signals starting at a low power value and increasing the power until the tag responded. Radio frequencies ranged from 903 to 927 megahertz and increased by increments of 2.4 megahertz. These measurements revealed that each tag had a unique minimum power response at multiple radio frequencies. Moreover, power responses were significantly different for same-model tags.

“Repeatedly, our experiments demonstrated that the minimum power response at multiple frequencies is unique for each tag,” Thompson said. “These different responses are just one of several unique physical characteristics that allowed us to create an electronic fingerprint to identify the tag with high probability and to detect counterfeit tags.”

Like other electronics equipment, cost and size have driven development of RFID technology. This emphasis means that most tags have limited computational capabilities; they do not include conventional encryption algorithms and security protocols to prevent cloning and counterfeiting. The electronic fingerprinting system addresses these concerns without increasing the cost or physically modifying the tag, Thompson said. The method can be used along with other security protocols for identification and authentication because it is independent of the computational capabilities and resources of the tag.

Thompson and Di are also developing network circuits that are resistant to side-channel attacks against readers and tags.

CONTACTS:

Dale R. Thompson, associate professor, computer science and computer engineering
College of Engineering
479-575-5090, drt@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>