Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprint makes chips counterfeit-proof

09.02.2011
Product counterfeiters are increasingly targeting chips and electronic components, with attacks on hardware modules becoming commonplace. Tailor-made security technology utilizes a component‘s individual material properties to generate a digital key. This provides components with an identity – since their unique structure cannot be copied. Fraunhofer researchers will be presenting a prototype at the embedded world Exhibition & Conference in Nuremberg from March 1 to 3.

Product piracy long ago ceased to be limited exclusively to the consumer goods sector. Industry, too, is increasingly having to combat this problem. Cheap fakes cost business dear: The German mechanical and plant engineering sector alone lost 6.4 billion euros of revenue in 2010, according to a survey by the German Engineering Federation (VDMA).


Digital fingerprint makes chips conterfeit-proof. (© Fraunhofer SIT)

Sales losses aside, low-quality counterfeits can also damage a company‘s brand image. Worse, they can even put people‘s lives at risk if they are used in areas where safety is paramount, such as automobile or aircraft manufacture. Patent rights or organizational provisions such as confidentiality agreements are no longer sufficient to prevent product piracy.

Today’s commercially available anti-piracy technology provides a degree of protection, but it no longer constitutes an insurmountable obstacle for the product counterfeiters: Criminals are using scanning electron microscopes, focused ion beams or laser bolts to intercept security keys – and adopting increasingly sophisticated methods.

No two chips are the same
At embedded world, researchers from the Fraunhofer Institute for Secure Information Technology SIT will be demonstrating how electronic components or chips can be made counterfeit-proof using physical unclonable functions (PUFs). ”Every component has a kind of individual fingerprint since small differences inevitably arise between components during production”, explains Dominik Merli, a scientist at Fraunhofer SIT in Garching near Munich. Printed circuits, for instance, end up with minimal variations in thickness or length during the manufacturing process. While these variations do not affect functionality, they can be used to generate a unique code.
Invasive attacks destroy the structure
A PUF module is integrated directly into a chip – a setup that is feasible not only in a large number of programmable semiconductors known as FPGAs (field programmable gate arrays) but equally in hardware components such as microchips and smartcards. “At its heart is a measuring circuit, for instance a ring oscillator. This oscillator generates a characteristic clock signal which allows the chip‘s precise material properties to be determined. Special electronic circuits then read these measurement data and generate the component-specific key from the data”, explains Merli. Unlike conventional cryptographic processes, the secret key is not stored on the hardware but is regenerated as and when required. Since the code relates directly to the system properties at any given point in time, it is virtually impossible to extract and clone it. Invasive attacks on the chip would alter physical parameters, thus distorting or destroying the unique structure.

The Garching-based researchers have already developed two prototypes: A butterfly PUF and a ring oscillator PUF. At present, these modules are being optimized for practical applications. The experts will be at embedded world in Nuremberg (hall 11, stand 203) from March 1-3 to showcase FPGA boards that can generate an individual cryptographic key using a ring oscillator PUF. These allow attack-resistant security solutions to be rolled out in embedded systems.

Dominik Merli | EurekAlert!
Further information:
http://www.sit.fraunhofer.de
http://www.fraunhofer.de/en/press/research-news/2010-2011/14/fingerprint-makes-chips-counterfeit-proof.jsp

Further reports about: Fingerprint German language PUF SIT electron microscope electronic circuit ion beam

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>