Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Feature stops apps from stealing phone users' passwords

Imagine downloading a NetFlix app to your phone so that you can watch movies on the go. You would expect the app to request your account's username and password the first time it runs. Most apps do.

But, not all apps are what they appear to be. They can steal log-in and password information. In 2011, researchers at North Carolina State University discovered a convincing imitation of the real Netflix app that forwarded users' login details to an untrusted server. And, in June, the security firm F-Secure discovered a malicious, fake version of the popular game "Bad Piggies" in the Google Play Store.

Attacks like these are rare, said Duke computer scientist Landon Cox, but, "we will likely see more of them in the future." To protect users against the threat of malicious apps, Cox and his team have built ScreenPass. ScreenPass adds new features to an Android phone's operating system to prevent malicious apps from stealing a user's passwords.

"Passwords are a critical glue between mobile apps and remote cloud services," Cox said. "The problem right now is that users have no idea what happens to the passwords they give to their apps."

This is where ScreenPass comes in. It provides a special-purpose software keyboard for users to securely enter sensitive text such as passwords. An area below the keyboard allows users to tell ScreenPass where they want their text sent, such as Google, Facebook, or Twitter. ScreenPass then tracks a users' password data as the app runs and notifies the user if an app tries to send a password to the wrong place.

ScreenPass guarantees that users always input passwords through the secure keyboard. It does this by using computer vision to periodically scan the screen for untrusted keyboards.

"If a malicious app can trick a user into inputting their password through a fake keyboard, then there is no way to guarantee that an app's password is sent only to the right servers," Cox said. If ScreenPass detects an untrusted keyboard, then an app may be trying to "spoof" the secure keyboard in order to steal the user's password.

Cox and his team presented ScreenPass at the MobiSys 2013 conference in Taipei on June 27.

In trials on a prototype phone, ScreenPass detected attack keyboards that tried to avoid detection by changing the font, color, and blurriness of letters on the keys. "The only attack keyboard that ScreenPass could not detect was a keyboard with a flowery background that blended in with the keyboard letters," Cox said.

He and his team also installed ScreenPass on the phones of 18 volunteers for three weeks to test how user-friendly it was. Users reported no additional burden at having to tell ScreenPass where their passwords should be sent.

Finally, testing ScreenPass on 27 apps from the Android Marketplace, the team found three apps sent passwords over the network in plaintext, four stored passwords in the local file system without encryption, and three apps sent passwords from different domains to a third-party server owned by the app developer. Cox would not provide the names of the apps, but said ScreenPass also easily detected the fake Netflix app.

Cox's team plans to make ScreenPass publicly available to continue to improve smartphone password security.

Citation: "ScreenPass: Secure Password Entry on Touchscreen Devices." Liu, D. et. al. MobiSys 2013. June 27, 2013.

Ashley Yeager | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>