Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster computers with nanotechnology

31.05.2010
The silicon transistors in your computer may be replaced in ten years by transistors based on carbon nanotubes. This is what scientists at the University of Gothenburg are hoping – they have developed a method to control the nanotubes during production.

Silicon is subject to certain limitations, and industry is looking for a replacement. The electronics industry has net annual sales of over USD 200 billion, and this means that the development is being fuelled by powerful forces.

Carbon nanotubes
Scientist Johannes Svensson from the Department of Physics at the University of Gothenburg has investigated the manufacture and use of carbon nanotubes in his PhD thesis.
Faster and smaller
“I don’t believe that it will be cheaper to build transistors from another material than silicon, but carbon nanotubes can be used to produce smaller and faster components. This will also result in computers that consume less energy” says Johannes Svensson.
Amazing development
The amazing development in computer power that has taken place after the invention of the integrated circuit in the 1950s has been made possible by the transistor, which is the most important component of all processors, becoming ever-faster.
Increase the speed
The most common semiconductor material in transistors is silicon, since it is cheap and easy to process. But silicon has its limitations. As the size of the transistors is reduced in order to increase their speed, problems arise that lead to, among other things, increased energy consumption and large variation in the transistor properties.
Pure carbon
By exchanging the silicon in the channel for a carbon nanotube, the transistors can be made both smaller and faster than today’s transistors. A carbon nanotube is a molecule in form of a hollow cylinder with a diameter of around a nanometer (roughly 1/50,000 of the width of a human hair) which consists of pure carbon. Some carbon nanotubes are semiconducting, and this means that they can be used in transistors, although there are several problems that must be solved before they can be connected together to form large circuits.
Electric guidance
“Carbon nanotubes grow randomly and it is not possible to control either their position or direction. Therefore I have applied an electrical field to guide the tubes as they grow”, says Johannes Svensson.
Built his own
One of the effects of the electric field is that most of the carbon nanotubes lie in the same direction.

“In order to show that it is possible to build electronic components that contain only carbon nanotubes, I have built a transistor which not only has a carbon nanotube as its channel, but also another nanotube which is used as the electrode that controls the current.”

Good contacts
Another problem that must be solved when integrating nanotubes into larger circuits is the difficulty of manufacturing good metal contacts for the tubes. Johannes’ research has shown that the properties of the contacts depend on the diameter of the nanotubes. Choosing the correct diameter will allow good contacts with a low resistance to be achieved.

The thesis Carbon Nanotube Transistors: Nanotube Growth, Contact Properties and Novel Devices was successfully defended at a disputation held on 7 May 2010.

Contact:
Johannes Svensson, Department of Physics, University of Gothenburg
Mobile; +46 768 539891
Tel: +46 31 772 3435
johannes@physics.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/21859
http://www.gu.se

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>