Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast laser could revolutionize data communications

04.03.2011
Researchers at Chalmers in Sweden have shown that a surface emitting laser – a cheaper and more energy-efficient type of laser for fiber optics than conventional lasers – can deliver error-free data at a record speed of 40 Gbit/s. The break-through could lead to faster Internet traffic, computers and mobile phones.

Today's commercial lasers can send up to 10 Gb of data per second (Gbit/s) through optical fibers. This applies to both conventional lasers and to surface emitting lasers. Researchers at Chalmers University of Technology have managed to increase the speed of the surface emitting laser four times, and see potential for further capacity increase.

This research will create great opportunities, not only for different types of local networks and supercomputers, but also for consumer electronics. By using multiple (parallel) channels computer cables with a total capacity of several hundred Gbit/s can be constructed.

“The market for this technology is gigantic. In the huge data centers that handle the Internet there are today over one hundred million surface emitting lasers. That figure is expected to increase a hundredfold,” says Professor Anders Larsson, who has developed the high speed laser together with his research group in optoelectronics.

Unlike a conventional laser the light from a surface emitting laser is emitted from the surface of the laser chip (not from the edge), like in an LED. The gain is the ability to not only fabricate, but also test, the lasers on the wafer (a 75 mm wide substrate of semiconductor material of industrial type) before it is cut into individual chips for assembly. The lasers work directly where they sit on the wafer. Conventional lasers work only after partition. The ability to test up to 100 000 lasers on a wafer reduces the cost of production to one tenth compared with conventional lasers.

The laser volume is smaller. It requires less power without losing speed. The energy and power consumption is a tenth of what a conventional laser requires at 40 Gbit/s – only a few hundred fJ/bit. If Anders Larsson and co-workers succeed in their development he expects that the power consumption of a complete optical link, between eg circuits in a computer (including drive electronics and receiver) will be no more than 100 fJ/bit.

“The laser's unique design makes it cheap to produce, while it transmits data at high rates with low power consumption,” Anders Larsson sums up.

The combination is unique, and opens up to a large-scale transition from electrical cables to optical cables in computers, and to side equipment, as a substitute for USB cables, for instance. Electric wires can handle up to a few Gbit/s. One can easily imagine dramatic performance gains in mobile phones and other electronics ahead. Most imminent are applications in supercomputers and the type of large data centers run by Google, eBay and Amazon.

“Here we are heading for a power catastrophe. The data centers represent a few percents of America's entire electricity consumption,” says Anders Larsson.

The next step for the Chalmers researchers is to modify the design and refine the ways to control the laser, to increase speed and reduce power consumption even further.

“We strive to meet market demands ten years from now,” says Anders Larsson, who estimates that we by 2020 will need energy-efficient cables that can handle 100 Gbit/s per channel.

The research is performed at the Chalmers research center FORCE. It is funded by Swedish Foundation for Strategic Research, SSF, and by the EU through the project VISIT. Participating companies in the European project are IQE Europe (UK), VI Systems (Germany) and Intel (Ireland). Informal partners in the project are Tyco Electronics and Ericsson (both Sweden). The findings are published in Electronics Letters from IEEE Explore.

For further information, please contact:Anders Larsson, Professor in Optoelectronics at Chalmers University of Technology; anders.larsson@chalmers.se; +46-31-772 15 93

Christian Borg | idw
Further information:
http://www.visit.tu-berlin.de/
http://www.chalmers.se/mc2/force-en

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>