Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fast laser could revolutionize data communications

Researchers at Chalmers in Sweden have shown that a surface emitting laser – a cheaper and more energy-efficient type of laser for fiber optics than conventional lasers – can deliver error-free data at a record speed of 40 Gbit/s. The break-through could lead to faster Internet traffic, computers and mobile phones.

Today's commercial lasers can send up to 10 Gb of data per second (Gbit/s) through optical fibers. This applies to both conventional lasers and to surface emitting lasers. Researchers at Chalmers University of Technology have managed to increase the speed of the surface emitting laser four times, and see potential for further capacity increase.

This research will create great opportunities, not only for different types of local networks and supercomputers, but also for consumer electronics. By using multiple (parallel) channels computer cables with a total capacity of several hundred Gbit/s can be constructed.

“The market for this technology is gigantic. In the huge data centers that handle the Internet there are today over one hundred million surface emitting lasers. That figure is expected to increase a hundredfold,” says Professor Anders Larsson, who has developed the high speed laser together with his research group in optoelectronics.

Unlike a conventional laser the light from a surface emitting laser is emitted from the surface of the laser chip (not from the edge), like in an LED. The gain is the ability to not only fabricate, but also test, the lasers on the wafer (a 75 mm wide substrate of semiconductor material of industrial type) before it is cut into individual chips for assembly. The lasers work directly where they sit on the wafer. Conventional lasers work only after partition. The ability to test up to 100 000 lasers on a wafer reduces the cost of production to one tenth compared with conventional lasers.

The laser volume is smaller. It requires less power without losing speed. The energy and power consumption is a tenth of what a conventional laser requires at 40 Gbit/s – only a few hundred fJ/bit. If Anders Larsson and co-workers succeed in their development he expects that the power consumption of a complete optical link, between eg circuits in a computer (including drive electronics and receiver) will be no more than 100 fJ/bit.

“The laser's unique design makes it cheap to produce, while it transmits data at high rates with low power consumption,” Anders Larsson sums up.

The combination is unique, and opens up to a large-scale transition from electrical cables to optical cables in computers, and to side equipment, as a substitute for USB cables, for instance. Electric wires can handle up to a few Gbit/s. One can easily imagine dramatic performance gains in mobile phones and other electronics ahead. Most imminent are applications in supercomputers and the type of large data centers run by Google, eBay and Amazon.

“Here we are heading for a power catastrophe. The data centers represent a few percents of America's entire electricity consumption,” says Anders Larsson.

The next step for the Chalmers researchers is to modify the design and refine the ways to control the laser, to increase speed and reduce power consumption even further.

“We strive to meet market demands ten years from now,” says Anders Larsson, who estimates that we by 2020 will need energy-efficient cables that can handle 100 Gbit/s per channel.

The research is performed at the Chalmers research center FORCE. It is funded by Swedish Foundation for Strategic Research, SSF, and by the EU through the project VISIT. Participating companies in the European project are IQE Europe (UK), VI Systems (Germany) and Intel (Ireland). Informal partners in the project are Tyco Electronics and Ericsson (both Sweden). The findings are published in Electronics Letters from IEEE Explore.

For further information, please contact:Anders Larsson, Professor in Optoelectronics at Chalmers University of Technology;; +46-31-772 15 93

Christian Borg | idw
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>