Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast laser could revolutionize data communications

04.03.2011
Researchers at Chalmers in Sweden have shown that a surface emitting laser – a cheaper and more energy-efficient type of laser for fiber optics than conventional lasers – can deliver error-free data at a record speed of 40 Gbit/s. The break-through could lead to faster Internet traffic, computers and mobile phones.

Today's commercial lasers can send up to 10 Gb of data per second (Gbit/s) through optical fibers. This applies to both conventional lasers and to surface emitting lasers. Researchers at Chalmers University of Technology have managed to increase the speed of the surface emitting laser four times, and see potential for further capacity increase.

This research will create great opportunities, not only for different types of local networks and supercomputers, but also for consumer electronics. By using multiple (parallel) channels computer cables with a total capacity of several hundred Gbit/s can be constructed.

“The market for this technology is gigantic. In the huge data centers that handle the Internet there are today over one hundred million surface emitting lasers. That figure is expected to increase a hundredfold,” says Professor Anders Larsson, who has developed the high speed laser together with his research group in optoelectronics.

Unlike a conventional laser the light from a surface emitting laser is emitted from the surface of the laser chip (not from the edge), like in an LED. The gain is the ability to not only fabricate, but also test, the lasers on the wafer (a 75 mm wide substrate of semiconductor material of industrial type) before it is cut into individual chips for assembly. The lasers work directly where they sit on the wafer. Conventional lasers work only after partition. The ability to test up to 100 000 lasers on a wafer reduces the cost of production to one tenth compared with conventional lasers.

The laser volume is smaller. It requires less power without losing speed. The energy and power consumption is a tenth of what a conventional laser requires at 40 Gbit/s – only a few hundred fJ/bit. If Anders Larsson and co-workers succeed in their development he expects that the power consumption of a complete optical link, between eg circuits in a computer (including drive electronics and receiver) will be no more than 100 fJ/bit.

“The laser's unique design makes it cheap to produce, while it transmits data at high rates with low power consumption,” Anders Larsson sums up.

The combination is unique, and opens up to a large-scale transition from electrical cables to optical cables in computers, and to side equipment, as a substitute for USB cables, for instance. Electric wires can handle up to a few Gbit/s. One can easily imagine dramatic performance gains in mobile phones and other electronics ahead. Most imminent are applications in supercomputers and the type of large data centers run by Google, eBay and Amazon.

“Here we are heading for a power catastrophe. The data centers represent a few percents of America's entire electricity consumption,” says Anders Larsson.

The next step for the Chalmers researchers is to modify the design and refine the ways to control the laser, to increase speed and reduce power consumption even further.

“We strive to meet market demands ten years from now,” says Anders Larsson, who estimates that we by 2020 will need energy-efficient cables that can handle 100 Gbit/s per channel.

The research is performed at the Chalmers research center FORCE. It is funded by Swedish Foundation for Strategic Research, SSF, and by the EU through the project VISIT. Participating companies in the European project are IQE Europe (UK), VI Systems (Germany) and Intel (Ireland). Informal partners in the project are Tyco Electronics and Ericsson (both Sweden). The findings are published in Electronics Letters from IEEE Explore.

For further information, please contact:Anders Larsson, Professor in Optoelectronics at Chalmers University of Technology; anders.larsson@chalmers.se; +46-31-772 15 93

Christian Borg | idw
Further information:
http://www.visit.tu-berlin.de/
http://www.chalmers.se/mc2/force-en

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>