Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, Fast Computing Simulation Tool Nets Best Paper Award

27.01.2010
Novel research on improving the simulation performance of hardware models created in a language called SystemC, often used to shorten manufacturing design cycles to improve the time it takes to bring a product to the marketplace, has garnered a best paper award at the 15th Asia and South Pacific Design Automation Conference (ASP-DAC) for a team led by Sandeep Shukla, Virginia Tech associate professor of electrical and computer engineering (ECE), and three of his students.
Shukla, a 2004 recipient of a Presidential Early Career Award for Scientists and Engineers (PECASE) and a 2008 recipient of the Freidrich Wilhelm Bessel Award from the Humboldt Foundation of Germany, http://www.ece.vt.edu/faculty/shukla.php

wrote the paper with his current Ph.D. students, Mahesh Nanjundappa and Bijoy A. Jose, also of Virginia Tech, and a past Ph.D. advisee Hiren D. Patel who is now an ECE assistant professor at the University of Waterloo in Canada.

Shukla and his collaborators said that they were able to demonstrate how to speed up the simulation performance of certain SystemC based hardware models “by exploiting the high degree of parallelism afforded by today’s general purpose graphic processor units (GPGPU).” These units have multiple core processors capable of very high computation and data throughput. When parallelism is applied, it means that the processor units can run various parts of the simulations simultaneously, and not just as a single sequence of computations. Their experiments were carried out on an NVIDIA Tesla 870 with 256 processing cores. This equipment was donated to Shukla’s lab by NVIDIA during fall 2008.

Shukla said their preliminary experiments showed they were able to speed up SystemC based simulation by factors of 30 to 100 times that of previous performances.

They named their simulation infrastructure SCGPSim. The Air Force Office of Scientific Research and the National Science Foundation helped support this research.

In the past, Shukla said, “significant effort was aimed at improving the performance of SystemC simulations, but little had been directed at making them operate in parallel. And none of the attempts were ever targeted at a massively parallel platform such as a general purpose graphic processor unit.”

Another aspect of their work was the use of a specific programming model called Compute Unified Device Architecture (CUDA). It is an extension to the C software language that “exploits the processing power of graphic processor units to solve complex compute-intensive problems efficiently,” Shukla explained. “High performance is achieved by launching a number of threads and making each thread execute a part of the application in parallel.”

The CUDA execution model differs from the more commonly known central processing unit (CPU) based execution in terms of how the threads are scheduled. With CUDA, it is possible to have all of the threads execute simultaneously on separate processor cores and intermittently converge on the same path, thus increasing the efficiency.

The work at Virginia Tech was conducted in the Formal Engineering Research with Models, Abstractions and Transformations (FERMAT) Laboratory, founded by Shukla in 2002. Its focus is in designing, analyzing and predicting performance of electronic systems, particularly systems embedded in automated systems. http://www.fermat.ece.vt.edu/

“Speeding up simulation of complex hardware models is extremely important for semiconductor electronics industry to producer newer and newer products in shorter times, thus improving the quality of computing and consumer electronics products faster. If such models can be simulated 10 times faster, then if validating a model took 10 days in the past, now it would take one day. This is why faster simulation performance probably attracted the attention of the ASP-DAC ’10 awards committee.” Shukla said.

ASP-DAC is one of the three conferences sponsored by IEEE Circuits and Systems Society, and ACM Special Interests Group on Design Automation, on the topic of electronics design automation. These three conferences are held every year in the US (DAC) , in Europe (DATE) and in the Asia-pacific region (ASP-DAC).

Virginia Tech’s College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation’s third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology. http://www.eng.vt.edu/main/index.php

Lynn A. Nystrom | Newswise Science News
Further information:
http://www.vt.edu
http://www.eng.vt.edu/main/index.php
http://www.asp-dac.itri.org.tw/aspdac2010/awards/index.html

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>