Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, Fast Computing Simulation Tool Nets Best Paper Award

27.01.2010
Novel research on improving the simulation performance of hardware models created in a language called SystemC, often used to shorten manufacturing design cycles to improve the time it takes to bring a product to the marketplace, has garnered a best paper award at the 15th Asia and South Pacific Design Automation Conference (ASP-DAC) for a team led by Sandeep Shukla, Virginia Tech associate professor of electrical and computer engineering (ECE), and three of his students.
Shukla, a 2004 recipient of a Presidential Early Career Award for Scientists and Engineers (PECASE) and a 2008 recipient of the Freidrich Wilhelm Bessel Award from the Humboldt Foundation of Germany, http://www.ece.vt.edu/faculty/shukla.php

wrote the paper with his current Ph.D. students, Mahesh Nanjundappa and Bijoy A. Jose, also of Virginia Tech, and a past Ph.D. advisee Hiren D. Patel who is now an ECE assistant professor at the University of Waterloo in Canada.

Shukla and his collaborators said that they were able to demonstrate how to speed up the simulation performance of certain SystemC based hardware models “by exploiting the high degree of parallelism afforded by today’s general purpose graphic processor units (GPGPU).” These units have multiple core processors capable of very high computation and data throughput. When parallelism is applied, it means that the processor units can run various parts of the simulations simultaneously, and not just as a single sequence of computations. Their experiments were carried out on an NVIDIA Tesla 870 with 256 processing cores. This equipment was donated to Shukla’s lab by NVIDIA during fall 2008.

Shukla said their preliminary experiments showed they were able to speed up SystemC based simulation by factors of 30 to 100 times that of previous performances.

They named their simulation infrastructure SCGPSim. The Air Force Office of Scientific Research and the National Science Foundation helped support this research.

In the past, Shukla said, “significant effort was aimed at improving the performance of SystemC simulations, but little had been directed at making them operate in parallel. And none of the attempts were ever targeted at a massively parallel platform such as a general purpose graphic processor unit.”

Another aspect of their work was the use of a specific programming model called Compute Unified Device Architecture (CUDA). It is an extension to the C software language that “exploits the processing power of graphic processor units to solve complex compute-intensive problems efficiently,” Shukla explained. “High performance is achieved by launching a number of threads and making each thread execute a part of the application in parallel.”

The CUDA execution model differs from the more commonly known central processing unit (CPU) based execution in terms of how the threads are scheduled. With CUDA, it is possible to have all of the threads execute simultaneously on separate processor cores and intermittently converge on the same path, thus increasing the efficiency.

The work at Virginia Tech was conducted in the Formal Engineering Research with Models, Abstractions and Transformations (FERMAT) Laboratory, founded by Shukla in 2002. Its focus is in designing, analyzing and predicting performance of electronic systems, particularly systems embedded in automated systems. http://www.fermat.ece.vt.edu/

“Speeding up simulation of complex hardware models is extremely important for semiconductor electronics industry to producer newer and newer products in shorter times, thus improving the quality of computing and consumer electronics products faster. If such models can be simulated 10 times faster, then if validating a model took 10 days in the past, now it would take one day. This is why faster simulation performance probably attracted the attention of the ASP-DAC ’10 awards committee.” Shukla said.

ASP-DAC is one of the three conferences sponsored by IEEE Circuits and Systems Society, and ACM Special Interests Group on Design Automation, on the topic of electronics design automation. These three conferences are held every year in the US (DAC) , in Europe (DATE) and in the Asia-pacific region (ASP-DAC).

Virginia Tech’s College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation’s third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology. http://www.eng.vt.edu/main/index.php

Lynn A. Nystrom | Newswise Science News
Further information:
http://www.vt.edu
http://www.eng.vt.edu/main/index.php
http://www.asp-dac.itri.org.tw/aspdac2010/awards/index.html

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>