Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What factors contribute to the success or failure of software firms?

19.11.2010
Researchers from the University of Pittsburgh, McGill University, and the Georgia Institute of Technology examine causes of failure and success in the software industry

Throughout the 1990s and 2000s, news about 20-somethings becoming billionaires from the sale of their software companies flooded the media, giving the impression that a good idea was all it took to succeed in the software industry.

Jennifer Shang, an associate professor of business management in the Joseph M. Katz Graduate School of Business, along with colleagues Shanling Li of McGill University and Sandra Slaughter of the Georgia Institute of Technology, investigated what caused software companies to succeed or fail. Their research study, titled "Why Do Software Firms Fail? Capabilities, Competitive Actions, and Firm Survival in the Software Industry From 1995 to 2007," has been published in the journal Information Systems Research.

Because of low entry and exit barriers and low marginal-production cost, new-product development takes place rapidly in the software industry, says Shang. However, the industry's bankruptcy rate of 15.9 percent is much higher than the rates in other industries. For example, the bankruptcy rate in the pharmaceutical industry is 4.7 percent.

Shang and her colleagues examined software-company data collected between 1995 and 2007 from 870 firms. The collaborators looked at three aspects of internal business capabilities—marketing, operating, and research and development. They also examined two types of competitive actions: those that were innovation-related (product and marketing actions) and those that were resource-related (capacity and scale expansion, operations, service, mergers, and acquisition). They found that a higher operating capability has the greatest influence on a software firm's chance of survival. Firms with a greater emphasis on innovation-related competitive actions have a greater likelihood of survival, and this likelihood increases when the firms also have higher marketing and operating abilities.

The researchers divided the software industry into three subsections: sector one, which included desktop suites and other business-enabling software; sector two, which included video games and graphics software; and sector three, which included operating systems and security programs. Depending on their sectors, software businesses need a slightly different approach to investments, says Shang. Firms producing games, for example, must emphasize marketing, whereas companies making products with a long life cycle (such as operating systems) must focus on operating abilities and research and development. Traditional software companies, those producing desktop applications, should follow a strategy somewhere between these two approaches.

"Our research underscores the importance of operating capability in the software industry," says Shang. "Managers of knowledge-based firms often emphasize big ideas (innovation). Our study shows that operational efficiency is even more important for firm survival. Also, competitive strategies and dynamic actions will have more impact if they are supported by strong capabilities. In short, to improve performance and competitiveness, software companies should focus on synergies between firm capabilities and strategic actions."

Amanda Leff Ritchie | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>