Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Eurotech delivers the “Booster” system to Jülich to complete the DEEP supercomputer


Eurotech, a leading provider of embedded and supercomputing technologies, today announced the installation of the DEEP “Booster”, a tightly coupled cluster of manycore coprocessors, at Jülich Supercomputing Centre. This novel and highly-scalable HPC system completes the Exascale-enabling DEEP System. This prototype is based on the Cluster-Booster architecture and has been developed within the research project DEEP (Dynamical Exascale Entry Platform), funded by the European Commission through the FP7 program under grant agreement no. 287530.

With this delivery, the DEEP consortium can leverage a supercomputer with a peak performance of 505 TFlop/s and an efficiency of over 3 GFlop/s per Watt. The Eurotech hot water cooling solution allows for additional permanent gains in energy efficiency at data centre level as it guarantees year-round free cooling in all climate zones.

The system includes a matching innovative software stack, and six carefully selected grand challenge simulation applications have been optimized to show the full performance potential of the system.

This Cluster-Booster architecture guarantees maximum flexibility and scalability with very high energy efficiency. The 3D Booster interconnect can be scaled up arbitrarily, and thus the DEEP system is a sound base for extrapolating to Exascale performance levels.

"DEEP features a unique and novel computing and programming concept” – says professor Thomas Lippert from Forschungszentrum Jülich – “Its Cluster-Booster architecture is optimized for problems with challenging computational complexities, highest data integration demands and unlimited scalability at the same time. DEEP is designed to open the door to extreme scale computing for a much wider range of scientifically, economically and societally relevant application fields than any other architecture could achieve before.”

Thanks to its architecture, the DEEP system dynamically matches the characteristics of application sections and the compute resources they run on. Highly scalable code parts with regular compute and communication patterns run on the Booster manycore coprocessors with high SIMD performance, while application sections with limited scalability or irregular patterns that require high single-thread performance execute on a general purpose multicore Cluster.

Both parts are connected with a high-speed, zero-copy network bridge, and arbitrary numbers of Booster and Cluster processors can be combined to best run an application.

In late 2012, Eurotech delivered the Cluster part of the DEEP supercomputer, an Aurora Tigon Cluster with 128 Intel® Xeon® nodes and an InfiniBand™ interconnect.

The recent installation extended the DEEP machine with the Booster, an innovative, highly scalable system. The Booster is a 384-node system interconnected via a 3D torus, directly switched by the interconnect of EXTOLL. Each Booster node has one Intel® Xeon Phi™ coprocessor, connected via PCI Express to an EXTOLL NIC, which enables the 3D Torus network. Each blade is made-up of 2 nodes assembled together and cooled with the Eurotech Direct Hot Water Cooling technology. This guarantees hot pluggability, uniform cooling of all components and high energy efficiency at the system and data centre level.

The Cluster and the Booster interconnect networks (fat-tree InfiniBand and EXTOLL direct-switched 3D torus) are bridged by Eurotech-designed Booster Interface nodes running a DEEP-designed bridging protocol. They use low power Intel® Xeon® CPUs which boot the Intel Xeon Phi coprocessors and coordinate the data flow between both sides of the DEEP system.

Since energy efficiency is universally perceived as a key challenge to reach Exascale, DEEP put this topic in the project focus. To this end, Eurotech installed a second DEEP prototype system – the DEEP Energy Efficiency Evaluator consisting of 8 Booster and 4 Cluster nodes – at project partner Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities. This system is dedicated to optimize the power consumption of the DEEP machine and test an innovative, scalable and fine-grained monitoring system developed within the project.

“The completion of the DEEP Booster delivery is a key milestone in the development of the novel “Cluster-Booster” concept developed in DEEP” says Fabio Gallo managing director HPC at Eurotech “It is going to be further enhanced in DEEP-ER. We believe this architectural innovation for extreme scale HPC systems is a key enabler for future European Exascale projects.”

While DEEP enters production, Eurotech and the DEEP partners are already engaged in the follow-up project DEEP-ER. With this project, the consortium takes the Cluster-Booster concept of DEEP to the next level. The DEEP-ER booster uses the second generation Intel Xeon Phi manycore CPUs, allowing the team to bring additional innovation and more flexibility to the DEEP supercomputing architecture.

The DEEP prototype system will remain in use at Jülich Supercomputing Centre at least for the next two years and will be also made available to application developers outside the project. To best exploit this innovative hardware architecture the project has developed a standards-based software stack for application developers that emphasizes ease-of-use.

It features a fully standard compliant MPI-2 implementation to facilitate straightforward porting of applications, and extends the OmpSs task-based programming model by scalable offload functionality to simplify the subdivision of applications into parts that run on the Cluster vs. the Booster.

The system is designed as a general-purpose HPC machine. It is especially interesting for HPC applications that combine parts with different scalability characteristics as the DEEP software stack enables dynamic offloading of the highly-scalable parts to the Booster, whereas low to medium scalable code parts run on the Cluster.

Eurotech company contacts:

Giovanbattista Mattiussi
Marketing Manager HPC

Giuliana Vidoni
Marketing & Communication

Contact at DEEP
Sabrina Eisenreich
PR Manager Research Projects

Weitere Informationen:

Dr. Ellen Latzin | Bayerische Akademie der Wissenschaften

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>