Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European computer scientists seek new framework for computation

30.10.2008
There have been several revolutions during the 60 year history of electronic computation, such as high level programming languages and client/server separation, but one key challenge has yet to be fully resolved.

This is to break down large complex processes into small more manageable components that can then be reused in different applications.

There are many possible ways of doing this, but none of them cope well with all processes, with the major problem lying in the dependant links, or correlations, between components that cannot be broken down, the threads that interconnect whole computer processes or programs. These correlations are common to all processes in which computation is involved, including biological systems and the emerging field of quantum computing, as well as conventional programming.

European computer scientists believe the time is right now for a coordinated effort to solve the correlation problem and a group of them recently held a workshop organised by the European Science Foundation (ESF) to establish a framework for further research. The workshop was an astounding success, firstly in identifying that correlations in computer science represented an important problem common to the whole field of programming and software development now highly relevant to all industries and everybody's lives. It was, as was noted by the workshop's convenor Ellie D'Hondt, a specialist in quantum computing research at Vrije Universiteit in Brussels, an important forum for accumulating the required expertise to take the field forward.

"We are now at a stage were all participants understand why we need a correlation paradigm, that there is a commonality between the fields included, and we converged on a definition and basic principles," said D'Hondt." People are now ready to do research on the problem, and this is what we should get together on in another year or so."

Now is a good time to tackle the correlation problem. The evolution of general purpose computing has reached a point where the correlation problem can stand in the way of progress. The explosion of the Internet has been associated with rapid growth in software components designed to be reused to avoid the cost of duplicated programming effort.

The workshop discussed progress in the relatively new field of aspect-oriented software development (AOSD), which is bringing new techniques for isolating the correlations cutting across software components. The techniques of AOSD make it possible to modularise those aspects of a system or process that cut across different components. In this way the cross cutting aspects themselves can be broken down into reusable components or objects. This in turn enables a whole process to be broken down more completely into components that also embrace the cross cutting aspects.

Research into correlation is also timely because expertise is emerging independently in three different fields, quantum computing, bio computing, and AOSD, the latter being most applicable to general purpose computing. As D'Hondt noted, cooperation between specialists in these fields is needed to avoid duplication of effort, but more particularly because it will stimulate and drive forward the whole study of correlations. On this front the ESF workshop was highly successful, because it bought together representatives from each of the three fields in small groups. "It was amazing to have these groups of people actually communicate," said D'Hondt. "We split up into small groups where there would be one aspect, one quantum and one bio person, people not usually knowing each other beforehand, and this worked! People came up with small presentations after only one day of talks getting introduced to the whole body of work."

A common thread emerged from these mini-workshops, which was the fact that correlations appear when progressing from the high level global description of a problem to the lower level local components. "Correlations capture the interaction between the parts," said D'Hondt. In other words the devil is in the

detail. This is as true in biological systems as say a web based search engine. In the human brain for example it is possible to define how long term memories are formed, but this does not tell us how an individual neuron might be phase locked with another at a local level, so that the two depend on each other. Similarly in computation, a high level view does not describe the particular order in which lower level components need to be executed on the basis of the correlations or links between them. For example two sub-programs might share a common variable, which decides when they have to be executed within a larger task or application.

The ESF workshop also established a common theme, which was that correlations can be a good thing, rather than a hindrance to computation, as has been shown in quantum computing. "Correlations are often seen as a burden, a nuisance, something making the problem hard to solve," said D'Hondt. "But my experience in quantum computing tells me it is something that can also steer computations or even make them possible."

Quantum computing involves entangled states that can actually be exploited to perform specific tasks more quickly - in effect just one computation can sometimes execute a large number of entangled components, each of which would require separate processing in a traditional computer.

The ultimate objective set out in the ESF workshop was to produce a recipe for programming taking full account of correlations, but this is still a long way off. Yet as D'Hondt noted, the basic framework for a new programming paradigm based on correlations in computer science was established.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/exploratory-workshops/physical-and-engineering-sciences-pesc/workshops-detail.html?ew=6593

More articles from Information Technology:

nachricht Intelligent maps will help robots navigate in your home
19.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Football through the eyes of a computer
14.06.2018 | Universität Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>