Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European computer scientists seek new framework for computation

30.10.2008
There have been several revolutions during the 60 year history of electronic computation, such as high level programming languages and client/server separation, but one key challenge has yet to be fully resolved.

This is to break down large complex processes into small more manageable components that can then be reused in different applications.

There are many possible ways of doing this, but none of them cope well with all processes, with the major problem lying in the dependant links, or correlations, between components that cannot be broken down, the threads that interconnect whole computer processes or programs. These correlations are common to all processes in which computation is involved, including biological systems and the emerging field of quantum computing, as well as conventional programming.

European computer scientists believe the time is right now for a coordinated effort to solve the correlation problem and a group of them recently held a workshop organised by the European Science Foundation (ESF) to establish a framework for further research. The workshop was an astounding success, firstly in identifying that correlations in computer science represented an important problem common to the whole field of programming and software development now highly relevant to all industries and everybody's lives. It was, as was noted by the workshop's convenor Ellie D'Hondt, a specialist in quantum computing research at Vrije Universiteit in Brussels, an important forum for accumulating the required expertise to take the field forward.

"We are now at a stage were all participants understand why we need a correlation paradigm, that there is a commonality between the fields included, and we converged on a definition and basic principles," said D'Hondt." People are now ready to do research on the problem, and this is what we should get together on in another year or so."

Now is a good time to tackle the correlation problem. The evolution of general purpose computing has reached a point where the correlation problem can stand in the way of progress. The explosion of the Internet has been associated with rapid growth in software components designed to be reused to avoid the cost of duplicated programming effort.

The workshop discussed progress in the relatively new field of aspect-oriented software development (AOSD), which is bringing new techniques for isolating the correlations cutting across software components. The techniques of AOSD make it possible to modularise those aspects of a system or process that cut across different components. In this way the cross cutting aspects themselves can be broken down into reusable components or objects. This in turn enables a whole process to be broken down more completely into components that also embrace the cross cutting aspects.

Research into correlation is also timely because expertise is emerging independently in three different fields, quantum computing, bio computing, and AOSD, the latter being most applicable to general purpose computing. As D'Hondt noted, cooperation between specialists in these fields is needed to avoid duplication of effort, but more particularly because it will stimulate and drive forward the whole study of correlations. On this front the ESF workshop was highly successful, because it bought together representatives from each of the three fields in small groups. "It was amazing to have these groups of people actually communicate," said D'Hondt. "We split up into small groups where there would be one aspect, one quantum and one bio person, people not usually knowing each other beforehand, and this worked! People came up with small presentations after only one day of talks getting introduced to the whole body of work."

A common thread emerged from these mini-workshops, which was the fact that correlations appear when progressing from the high level global description of a problem to the lower level local components. "Correlations capture the interaction between the parts," said D'Hondt. In other words the devil is in the

detail. This is as true in biological systems as say a web based search engine. In the human brain for example it is possible to define how long term memories are formed, but this does not tell us how an individual neuron might be phase locked with another at a local level, so that the two depend on each other. Similarly in computation, a high level view does not describe the particular order in which lower level components need to be executed on the basis of the correlations or links between them. For example two sub-programs might share a common variable, which decides when they have to be executed within a larger task or application.

The ESF workshop also established a common theme, which was that correlations can be a good thing, rather than a hindrance to computation, as has been shown in quantum computing. "Correlations are often seen as a burden, a nuisance, something making the problem hard to solve," said D'Hondt. "But my experience in quantum computing tells me it is something that can also steer computations or even make them possible."

Quantum computing involves entangled states that can actually be exploited to perform specific tasks more quickly - in effect just one computation can sometimes execute a large number of entangled components, each of which would require separate processing in a traditional computer.

The ultimate objective set out in the ESF workshop was to produce a recipe for programming taking full account of correlations, but this is still a long way off. Yet as D'Hondt noted, the basic framework for a new programming paradigm based on correlations in computer science was established.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/exploratory-workshops/physical-and-engineering-sciences-pesc/workshops-detail.html?ew=6593

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>