Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhancing the Efficiency of Complex Computations

29.11.2013
Planning a trip from Berlin to Hamburg, simulating air flows around a new passenger airplane, or friendships on Facebook – many computer applications model relationships between objects by graphs (networks) in the sense of discrete mathematics.

An important method to manage complex computations on steadily growing networks is graph partitioning. The KIT computer scientists Professor Peter Sanders and Dr. Christian Schulz have now released the Karlsruhe High Quality Partitioner (KaHIP). The solutions produced by this tool presently are the best worldwide.


Graph to compute the air flow around an airplane wing: The four colors reflect the partitioning of the graph and, hence, the distribution of computation among four computers.

(Graphics: Christian Schulz, KIT)

By means of KaHIP, the modeled objects (nodes of the graph) are divided into blocks of about the same size, while the number of edges between the blocks are minimized. In this way, route planners, for instance, can be accelerated: The transport network stored in the route planner is partitioned. When planning a specific route, e.g. from Berlin to Hamburg, large parts of the transport network can be neglected, as they are of no relevance. In this way, a partitioning tool like KaHIP can accelerate the computation of a route by several factors.

Complex computations with very detailed graphs, such as the computation of flow properties of an airplane, frequently require more than one computer. In such a case, KaHIP can distribute computations in a reasonable manner and ensures efficient, simultaneous computations on several computers. The determining factor is the number of edges that have to be cut in a graph. “Computation speed increases with a decreasing number of edges that have to be cut. Our system solves the graph partitioning problem by cutting about three times less edges than comparable tools on the market,” Dr. Christian Schulz, scientist at the KIT Institute of Theoretical Informatics, explains.

KaHIP – Open Source

Within the framework of his PhD thesis at KIT, Christian Schulz developed KaHIP together with Professor Peter Sanders. Already during the development phase the tool received high interest in science and industry. KaHIP is now available as open source program. In international comparison, KaHIP has already proven to be competitive. It scored most of the points in the 10th DIMACS Implementation Challenge as well as the Walshaw Benchmark, in which graph partitioners from all over the world compete with each other.

“Based on our long-standing experience in the area of graph processing, we are now able to offer KaHIP, a tool that supplies the best solution quality worldwide for a number of applications,” says Professor Peter Sanders of the KIT Institute of Theoretical Informatics.

Professor Sanders was granted several prizes for his work on algorithms for graph processing. Among them were the State Research Award and the Google Focused Research Award in 2012 as well as the Gottfried Wilhelm Leibniz Prize in 2011.

For more information on KaHIP, click: http://algo2.iti.kit.edu/documents/kahip/

Monika Landgraf | idw
Further information:
http://www.kit.edu
http://algo2.iti.kit.edu/documents/kahip/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>