Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhancing the Efficiency of Complex Computations

29.11.2013
Planning a trip from Berlin to Hamburg, simulating air flows around a new passenger airplane, or friendships on Facebook – many computer applications model relationships between objects by graphs (networks) in the sense of discrete mathematics.

An important method to manage complex computations on steadily growing networks is graph partitioning. The KIT computer scientists Professor Peter Sanders and Dr. Christian Schulz have now released the Karlsruhe High Quality Partitioner (KaHIP). The solutions produced by this tool presently are the best worldwide.


Graph to compute the air flow around an airplane wing: The four colors reflect the partitioning of the graph and, hence, the distribution of computation among four computers.

(Graphics: Christian Schulz, KIT)

By means of KaHIP, the modeled objects (nodes of the graph) are divided into blocks of about the same size, while the number of edges between the blocks are minimized. In this way, route planners, for instance, can be accelerated: The transport network stored in the route planner is partitioned. When planning a specific route, e.g. from Berlin to Hamburg, large parts of the transport network can be neglected, as they are of no relevance. In this way, a partitioning tool like KaHIP can accelerate the computation of a route by several factors.

Complex computations with very detailed graphs, such as the computation of flow properties of an airplane, frequently require more than one computer. In such a case, KaHIP can distribute computations in a reasonable manner and ensures efficient, simultaneous computations on several computers. The determining factor is the number of edges that have to be cut in a graph. “Computation speed increases with a decreasing number of edges that have to be cut. Our system solves the graph partitioning problem by cutting about three times less edges than comparable tools on the market,” Dr. Christian Schulz, scientist at the KIT Institute of Theoretical Informatics, explains.

KaHIP – Open Source

Within the framework of his PhD thesis at KIT, Christian Schulz developed KaHIP together with Professor Peter Sanders. Already during the development phase the tool received high interest in science and industry. KaHIP is now available as open source program. In international comparison, KaHIP has already proven to be competitive. It scored most of the points in the 10th DIMACS Implementation Challenge as well as the Walshaw Benchmark, in which graph partitioners from all over the world compete with each other.

“Based on our long-standing experience in the area of graph processing, we are now able to offer KaHIP, a tool that supplies the best solution quality worldwide for a number of applications,” says Professor Peter Sanders of the KIT Institute of Theoretical Informatics.

Professor Sanders was granted several prizes for his work on algorithms for graph processing. Among them were the State Research Award and the Google Focused Research Award in 2012 as well as the Gottfried Wilhelm Leibniz Prize in 2011.

For more information on KaHIP, click: http://algo2.iti.kit.edu/documents/kahip/

Monika Landgraf | idw
Further information:
http://www.kit.edu
http://algo2.iti.kit.edu/documents/kahip/

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>