Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced zooming on maps

17.02.2012
Road maps and city maps in the Internet could be even more attractive and user-friendly than today.

This is what computer scientists of the University of Würzburg are currently working on. One of their objectives is to develop maps the scale of which changes gradually rather than abruptly when zooming in and out. The first results of the scientists are published in a journal for visualization and computer graphics.


When a region of the road map is scaled up, distortions are created (red). Computer scientists of the University of Würzburg have developed a method (right) which significantly reduces the distortions when compared to the conventional fish-eye technique.
Picture: Jan-Henrik Haunert

Imagine you plan a day trip to the city of Berlin by train. To prepare for the trip, you might take a look at the maps provided by Google or Bing. Where is the train station located in Berlin, which direction should I take for the city center and how will I get to the cathedral? As you are zooming in more deeply on the city map, discovering ever more details – at some point in time, the train station will no longer be displayed on the screen. Where was it again?

"If you use the zoom function of maps in the Internet, you will not get several views of one and the same map; instead, various different maps are presented so that there are sudden changes in the representation," explains Professor Alexander Wolff of the Institute of Computer Science at the University of Würzburg. Therefore, users can easily get disoriented. Wolff and his colleague Jan-Henrik Haunert are going to remedy this problem – by means of maps with a variable scale. The project is funded by the German Research Foundation (DFG).

Enlarging individual regions on city maps

Variable scale – the Würzburg computer scientists have interactive maps in mind, on which individual regions can be viewed at a larger scale. Example: On an Internet map of Würzburg, a tourist would like to have a more detailed view of the streets leading to the Lion Bridge. He selects the respective point and gets an enlarged representation of the desired region. The residual part of the map shown on the screen continues to be displayed so that the total view of the city center is maintained.

Zoom method significantly improved

It has been possible for quite some time to implement this type of representation on the computer, using the so-called fish-eye technique. However, Jan-Henrik Haunert and the computer science student Leon Sering have recently developed a significantly improved method, presented in the December 2011 issue of the journal "IEEE Transactions on Visualization and Computer Graphics".

The fish-eye technique has the following disadvantage: When scaling-up a certain region, the rest of the map is highly distorted. With the method of the Würzburg computer scientists, this distortion can be significantly reduced – by about 75 percent. By means of an even better variant of this method, the processing time of the computer for calculating the zoom operation can be reduced by half: In this case, only the area directly around the enlarged region is distorted. Here, the deformation is still 65 percent smaller when compared to the fish-eye technique.

Processing time must be shortened

Let’s consider processing time: At the moment, it takes several seconds, for instance, to calculate the city map of Würzburg anew with a desired scaled-up region. This may be acceptable to someone who just needs a one-time printout of a map. But it is far too slow for users browsing a city map in the Internet and it is obviously not fast enough for real-time applications in navigation systems. Furthermore, the technique is not suited to be used in smart phones either. "It is still based on extensive convex programming, for which smart phones do not have enough processing power," says Professor Wolff.

Creating animated transitions between maps

So the method with the variable scale must be made faster. Over the coming three years, the computer scientists intend to achieve this target and some additional objectives in their DFG project. They also want to eliminate other effects that are likely to confuse users of interactive maps – such as the fact that the labels and the type of representation are subject to abrupt changes during zoom operations. For instance, users can get confused when the train station, which is initially represented as a point, suddenly changes into a large structure of railway tracks and buildings.

"As a solution to this problem, we are going to create animations that will allow smooth transitions between individual maps and different scales," says Jan Haunert. "The generalization of the data is the fundamental problem here." Generalization means in this case: For the animation, a detailed map together with its labels must be simplified step by step. When zooming, the user should finally get the impression that he is smoothly gliding along on one single map instead of switching from map to map and jumping from scale to scale. Then, it would be much more pleasant to plan a day trip to Berlin.

Project in the Internet Research Center

The DFG project of Alexander Wolff and Jan-Henrik Haunert is located at the Internet Research Center of the University of Würzburg. At this research center, computer scientists, psychologist and legal scholars focus on topics such as innovative web applications and a modern architecture of the World Wide Web.

“Drawing Road Networks with Focus Regions”, Jan-Henrik Haunert and Leon Sering, IEEE Transactions on Visualization and Computer Graphics, Vol. 17, Issue 12, 2555-2562, December 2011, DOI 10.1109/TVCG.2011.191

Read the publication: http://www1.informatik.uni-wuerzburg.de/pub/haunert/pdf/HaunertSering2011.pdf

Links

Further information on the research at the Department of Computer Science I at the University of Würzburg: http://www1.informatik.uni-wuerzburg.de/en/research/

To the Internet Research Center of the University of Würzburg: http://ircwiki.informatik.uni-wuerzburg.de/

Contact

Prof. Dr. Alexander Wolff, Department of Computer Science, University of Würzburg, T + 49 931 31-85055

Dr. Jan-Henrik Haunert, Department of Computer Science, University of Würzburg, T + 49 931 31-88668

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>